MAT 531

Geometry/Topology II

Introduction to Smooth Manifolds

Claude LeBrun Stony Brook University

March 31, 2020

Recall that a smooth vector field V

 $V: C^{\infty}(M) \to C^{\infty}(M)$

 $V: C^{\infty}(M) \to C^{\infty}(M)$

that satisfies the Leibniz rule

 $V: C^{\infty}(M) \to C^{\infty}(M)$

that satisfies the Leibniz rule

V(fg) = fVg + gVf.

 $V: C^{\infty}(M) \to C^{\infty}(M)$

that satisfies the Leibniz rule

$$V(fg) = fVg + gVf.$$

In any chart (system of local coordinates) (x^1, \ldots, x^n) ,

 $V: C^{\infty}(M) \to C^{\infty}(M)$

that satisfies the Leibniz rule

$$V(fg) = fVg + gVf.$$

In any chart (system of local coordinates) (x^1, \ldots, x^n) , such a vector field takes the form

 $V: C^{\infty}(M) \to C^{\infty}(M)$

that satisfies the Leibniz rule

$$V(fg) = fVg + gVf.$$

In any chart (system of local coordinates) (x^1, \ldots, x^n) , such a vector field takes the form

$$V = \sum_{j=1}^{n} V^{j}(x) \frac{\partial}{\partial x^{j}}$$

 $V: C^{\infty}(M) \to C^{\infty}(M)$

that satisfies the Leibniz rule

$$V(fg) = fVg + gVf.$$

In any chart (system of local coordinates) (x^1, \ldots, x^n) , such a vector field takes the form

$$V = \sum_{j=1}^{n} V^{j}(x) \frac{\partial}{\partial x^{j}}$$

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$

 $V: C^{\infty}(M) \to C^{\infty}(M)$

that satisfies the Leibniz rule

$$V(fg) = fVg + gVf.$$

In any chart (system of local coordinates) (x^1, \ldots, x^n) , such a vector field takes the form

$$V = \sum_{j=1}^{n} V^{j}(x) \frac{\partial}{\partial x^{j}}$$

Infinite-dimensional vector space

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$

Such a vector field may also be thought of as

That is, $V(p) \in T_p M$ for every $p \in M$.

That is, $V(p) \in T_p M$ for every $p \in M$. Thus $V : M \to TM$ is a one-sided inverse of

That is, $V(p) \in T_p M$ for every $p \in M$. Thus $V : M \to TM$ is a one-sided inverse of

 $\varpi: TM \to M.$

That is, $V(p) \in T_p M$ for every $p \in M$. Thus $V : M \to TM$ is a one-sided inverse of

$$\varpi:TM \longrightarrow M$$

That is, $V(p) \in T_p M$ for every $p \in M$. Thus $V : M \to TM$ is a one-sided inverse of

$$\varpi:TM \longrightarrow M$$

Good generalization for vector fields that are C^k .

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[,]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

[V, W]f = VWf - WVf.

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

[V,W]f = VWf - WVf.

This map is linear in both arguments, and satisfies

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

[V,W]f = VWf - WVf.

This map is linear in both arguments, and satisfies

1. Skew symmetry:

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

[V, W]f = VWf - WVf.

This map is linear in both arguments, and satisfies

1. Skew symmetry:

[V,W] = -[W,V]

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

[V,W]f = VWf - WVf.

This map is linear in both arguments, and satisfies

1. Skew symmetry:

$$[V,W] = -[W,V]$$

2. Jacobi identity:

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

[V, W]f = VWf - WVf.

This map is linear in both arguments, and satisfies 1. *Skew symmetry:*

$$[V,W] = -[W,V]$$

2. Jacobi identity:

[U, [V, W]] + [V, [W, U]] + [W, [U, V]] = 0.

 $\mathfrak{X}(M) = \{ \text{Smooth vector fields } V \text{ on } M \}$ carries Lie bracket operation

 $[\;,\;]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$ defined by

[V,W]f = VWf - WVf.

This map is linear in both arguments, and satisfies 1. *Skew symmetry:*

$$[V,W] = -[W,V]$$

2. Jacobi identity:

[U, [V, W]] + [V, [W, U]] + [W, [U, V]] = 0.

This makes $\mathfrak{X}(M)$ into a "Lie algebra."

If $V \in \mathfrak{X}(M)$, we say that

If
$$V \in \mathfrak{X}(M)$$
, we say that
 $\gamma : (-\varepsilon, \varepsilon) \to M$

If $V \in \mathfrak{X}(M)$, we say that $\gamma : (-\varepsilon, \varepsilon) \to M$

is an *integral curve* of V if

If $V \in \mathfrak{X}(M)$, we say that $\gamma : (-\varepsilon, \varepsilon) \to M$ is an *integral curve* of V if

$$\frac{d}{dt}\gamma(t) = V|_{\gamma(t)}$$

If $V \in \mathfrak{X}(M)$, we say that $\gamma : (-\varepsilon, \varepsilon) \to M$ is an *integral curve* of V if

$$\frac{d}{dt}\gamma(t) = V|_{\gamma(t)}$$
 for all $t \in (-\varepsilon, \varepsilon)$.
Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$,

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma: (-\varepsilon, \varepsilon) \to M$$

with $\gamma(0) = p$,

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

with $\gamma(0) = p$, for some $\varepsilon > 0$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

with $\gamma(0) = p$, for some $\varepsilon > 0$. Moreover, if V is compactly supported,

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

with $\gamma(0) = p$, for some $\varepsilon > 0$. Moreover, if V is compactly supported, one can take $\varepsilon = \infty$:

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in M$, there exists a unique integral curve

$$\gamma:(-\varepsilon,\varepsilon)\to M$$

with $\gamma(0) = p$, for some $\varepsilon > 0$. Moreover, if V is compactly supported, one can take $\varepsilon = \infty$:

$$\gamma: \mathbb{R} \to M.$$

Recall that $V \in \mathfrak{X}(M)$ compactly supported

Recall that $V \in \mathfrak{X}(M)$ compactly supported \iff

Recall that $V \in \mathfrak{X}(M)$ compactly supported \iff supp $V := \overline{\{p \in M \mid V(p) \neq 0\}}$ Recall that $V \in \mathfrak{X}(M)$ compactly supported \iff supp $V := \overline{\{p \in M \mid V(p) \neq 0\}}$

is compact.

 \implies every integral curve can be extended to

 $\gamma:\mathbb{R}\to M$

 $\gamma:\mathbb{R}\to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\gamma:\mathbb{R}\to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

 $\gamma:\mathbb{R}\to M$

For each $t \in \mathbb{R}$, can then define a smooth map $\Phi_t : M \to M$

by setting

 $\gamma:\mathbb{R}\to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$.

 \implies every integral curve can be extended to

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$. We can also define a smooth map

 \implies every integral curve can be extended to

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$. We can also define a smooth map

$$\Phi: M \times \mathbb{R} \to M$$

 \implies every integral curve can be extended to

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$. We can also define a smooth map

$$\Phi: M \times \mathbb{R} \to M$$

by setting

 \implies every integral curve can be extended to

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$. We can also define a smooth map

 $\Phi:M\times\mathbb{R}\to M$

by setting

 $\Phi(p,t) = \Phi_t(p).$

 $\gamma: \mathbb{R} \to M$

For each $t \in \mathbb{R}$, can then define a smooth map

 $\Phi_t: M \to M$

by setting

 $\Phi_t(p) = \gamma_p(t)$ where γ_p unique integral curve with $\gamma_p(0) = p$. We can also define a smooth map

 $\Phi:M\times\mathbb{R}\to M$

by setting

 $\Phi(p,t) = \Phi_t(p).$

This map is called the flow of V.

Theorem.

Theorem. *Given any* compactly supported

 $\Phi_t: M \to M$

 $\Phi_t: M \to M$

are all diffeomorphisms,

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_0 = id_M$
Theorem. Given any compactly supported $V \in \mathfrak{X}(M)$, the maps

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_0 = id_M$ $\Phi_u \circ \Phi_t = \Phi_{u+t}.$

Theorem. Given any compactly supported $V \in \mathfrak{X}(M)$, the maps

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_0 = id_M$

$$\Phi_u \circ \Phi_t = \Phi_{u+t}.$$

Thus, these form a one-parameter group of diffeomorphisms $M \to M$. **Theorem.** Given any compactly supported $V \in \mathfrak{X}(M)$, the maps

 $\Phi_t: M \to M$

are all diffeomorphisms, and satisfy

 $\Phi_0 = i d_M$

$$\Phi_u \circ \Phi_t = \Phi_{u+t}.$$

Thus, these form a one-parameter group of diffeomorphisms $M \to M$.

Notice that

 $\Phi_{-t} = (\Phi_t)^{-1}$

Corollary. Let M be a connected n-manifold,

Corollary. Let M be a connected n-manifold, and let $p_1, \ldots, p_k \in M$ be any k points. **Corollary.** Let M be a connected n-manifold, and let $p_1, \ldots, p_k \in M$ be any k points. Then there is a coordinate domain $U \subset M$,

When k = 2, take U to be coordinate domain $\ni p_1$.

When k = 2, take U to be coordinate domain $\ni p_1$. Suffices to construct diffeo $\Phi : M \to M$ fixing p_1 and with $\Phi(p_2) \in U$.

When k = 2, take U to be coordinate domain $\ni p_1$. Suffices to construct diffeo $\Phi : M \to M$ fixing p_1 and with $\Phi(p_2) \in U$.

Construct Φ as some Φ_t for suitable V.

When k = 2, take U to be coordinate domain $\ni p_1$.

Suffices to construct diffeo $\Phi : M \to M$ fixing p_1 and with $\Phi(p_2) \in U$.

Construct Φ as some Φ_t for suitable V.

Construct V to be supported near embedded curve joining p_2 to a point in U.

When k = 2, take U to be coordinate domain $\ni p_1$.

Suffices to construct diffeo $\Phi : M \to M$ fixing p_1 and with $\Phi(p_2) \in U$.

Construct Φ as some Φ_t for suitable V.

Construct V to be supported near embedded curve joining p_2 to a point in U.

General k similar; proceed by induction.