MAT 531

Geometry/Topology II

Introduction to Smooth Manifolds

Claude LeBrun
Stony Brook University

March 31, 2020

Recall that a smooth vector field V

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

$$
V(f g)=f V g+g V f
$$

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

$$
V(f g)=f V g+g V f
$$

In any chart (system of local coordinates) $\left(x^{1}, \ldots, x^{n}\right)$,

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

$$
V(f g)=f V g+g V f
$$

In any chart (system of local coordinates) $\left(x^{1}, \ldots, x^{n}\right)$, such a vector field takes the form

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

$$
V(f g)=f V g+g V f
$$

In any chart (system of local coordinates) $\left(x^{1}, \ldots, x^{n}\right)$, such a vector field takes the form

$$
V=\sum_{j=1}^{n} V^{j}(x) \frac{\partial}{\partial x^{j}}
$$

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

$$
V(f g)=f V g+g V f
$$

In any chart (system of local coordinates) $\left(x^{1}, \ldots, x^{n}\right)$, such a vector field takes the form

$$
V=\sum_{j=1}^{n} V^{j}(x) \frac{\partial}{\partial x^{j}}
$$

$\mathfrak{X}(M)=\{$ Smooth vector fields V on $M\}$

Recall that a smooth vector field V on a smooth manifold M^{n} is a linear map

$$
V: C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that satisfies the Leibniz rule

$$
V(f g)=f V g+g V f
$$

In any chart (system of local coordinates) $\left(x^{1}, \ldots, x^{n}\right)$, such a vector field takes the form

$$
V=\sum_{j=1}^{n} V^{j}(x) \frac{\partial}{\partial x^{j}}
$$

Infinite-dimensional vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

Such a vector field may also be thought of as

Such a vector field may also be thought of as smooth section $V: M \rightarrow T M$ of tangent bundle

Such a vector field may also be thought of as smooth section $V: M \rightarrow T M$ of tangent bundle
 $$
\varpi: T M \rightarrow M
$$

Such a vector field may also be thought of as smooth section $V: M \rightarrow T M$ of tangent bundle

$$
\varpi: T M \rightarrow M
$$

That is, $V(p) \in T_{p} M$ for every $p \in M$.

Such a vector field may also be thought of as smooth section $V: M \rightarrow T M$ of tangent bundle

$$
\varpi: T M \rightarrow M
$$

That is, $V(p) \in T_{p} M$ for every $p \in M$.
Thus $V: M \rightarrow T M$ is a one-sided inverse of

Such a vector field may also be thought of as smooth section $V: M \rightarrow T M$ of tangent bundle

$$
\varpi: T M \rightarrow M
$$

That is, $V(p) \in T_{p} M$ for every $p \in M$.
Thus $V: M \rightarrow T M$ is a one-sided inverse of

$$
\varpi: T M \rightarrow M
$$

Such a vector field may also be thought of as smooth section $V: M \rightarrow T M$ of tangent bundle

$$
\varpi: T M \rightarrow M
$$

That is, $V(p) \in T_{p} M$ for every $p \in M$.
Thus $V: M \rightarrow T M$ is a one-sided inverse of

$$
\varpi: T M \rightleftarrows M
$$

Such a vector field may also be thought of as smooth section $V: M \rightarrow T M$ of tangent bundle

$$
\varpi: T M \rightarrow M
$$

That is, $V(p) \in T_{p} M$ for every $p \in M$.
Thus $V: M \rightarrow T M$ is a one-sided inverse of

$$
\varpi: T M \rightleftarrows M
$$

Good generalization for vector fields that are C^{k}.

The vector space

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

$$
[V, W] f=V W f-W V f
$$

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

$$
[V, W] f=V W f-W V f
$$

This map is linear in both arguments, and satisfies

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

$$
[V, W] f=V W f-W V f
$$

This map is linear in both arguments, and satisfies

1. Skew symmetry:

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

$$
[V, W] f=V W f-W V f
$$

This map is linear in both arguments, and satisfies

1. Skew symmetry:

$$
[V, W]=-[W, V]
$$

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

$$
[V, W] f=V W f-W V f
$$

This map is linear in both arguments, and satisfies

1. Skew symmetry:

$$
[V, W]=-[W, V]
$$

2. Jacobi identity:

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

$$
[V, W] f=V W f-W V f
$$

This map is linear in both arguments, and satisfies

1. Skew symmetry:

$$
[V, W]=-[W, V]
$$

2. Jacobi identity:

$$
[U,[V, W]]+[V,[W, U]]+[W,[U, V]]=0 .
$$

The vector space

$$
\mathfrak{X}(M)=\{\text { Smooth vector fields } V \text { on } M\}
$$

carries Lie bracket operation

$$
[,]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)
$$

defined by

$$
[V, W] f=V W f-W V f
$$

This map is linear in both arguments, and satisfies

1. Skew symmetry:

$$
[V, W]=-[W, V]
$$

2. Jacobi identity:

$$
[U,[V, W]]+[V,[W, U]]+[W,[U, V]]=0 .
$$

This makes $\mathfrak{X}(M)$ into a "Lie algebra."

$$
\text { If } V \in \mathfrak{X}(M) \text {, we say that }
$$

$$
\begin{aligned}
& \text { If } V \in \mathfrak{X}(M) \text {, we say that } \\
& \qquad \gamma:(-\varepsilon, \varepsilon) \rightarrow M
\end{aligned}
$$

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M,

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

with $\gamma(0)=p$,

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\begin{array}{r}
\gamma:(-\varepsilon, \varepsilon) \rightarrow M \\
\text { with } \gamma(0)=p, \text { for some } \varepsilon>0
\end{array}
$$

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

with $\gamma(0)=p$, for some $\varepsilon>0$. Moreover, if V is compactly supported,

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

with $\gamma(0)=p$, for some $\varepsilon>0$. Moreover, if V is compactly supported, one can take $\varepsilon=\infty$:

If $V \in \mathfrak{X}(M)$, we say that

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

is an integral curve of V if

$$
\frac{d}{d t} \gamma(t)=\left.V\right|_{\gamma(t)}
$$

for all $t \in(-\varepsilon, \varepsilon)$.

Theorem. Given any $V \in \mathfrak{X}(M)$ and any $p \in$ M, there exists a unique integral curve

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M
$$

with $\gamma(0)=p$, for some $\varepsilon>0$. Moreover, if V is compactly supported, one can take $\varepsilon=\infty$:

$$
\gamma: \mathbb{R} \rightarrow M
$$

Recall that $V \in \mathfrak{X}(M)$ compactly supported

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\begin{aligned}
& \text { Recall that } V \in \mathfrak{X}(M) \text { compactly supported } \Longleftrightarrow \\
& \qquad \operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
\end{aligned}
$$

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow
 $$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact.

$$
\begin{aligned}
& \text { Recall that } V \in \mathfrak{X}(M) \text { compactly supported } \Longleftrightarrow \\
& \qquad \operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
\end{aligned}
$$

is compact. Automatic if M is compact manifold!

$$
\begin{aligned}
& \text { Recall that } V \in \mathfrak{X}(M) \text { compactly supported } \Longleftrightarrow \\
& \qquad \operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
\end{aligned}
$$

is compact. Automatic if M is compact manifold! \Longrightarrow

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

$$
\begin{aligned}
& \text { Recall that } V \in \mathfrak{X}(M) \text { compactly supported } \Longleftrightarrow \\
& \qquad \operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
\end{aligned}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\begin{aligned}
& \text { Recall that } V \in \mathfrak{X}(M) \text { compactly supported } \Longleftrightarrow \\
& \qquad \operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
\end{aligned}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting

$$
\Phi_{t}(p)=\gamma_{p}(t)
$$

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p}

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

$$
\Phi: M \times \mathbb{R} \rightarrow M
$$

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

$$
\Phi: M \times \mathbb{R} \rightarrow M
$$

by setting

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

$$
\Phi: M \times \mathbb{R} \rightarrow M
$$

by setting

$$
\Phi(p, t)=\Phi_{t}(p)
$$

Recall that $V \in \mathfrak{X}(M)$ compactly supported \Longleftrightarrow

$$
\operatorname{supp} V:=\overline{\{p \in M \mid V(p) \neq 0\}}
$$

is compact. Automatic if M is compact manifold!
\Longrightarrow every integral curve can be extended to

$$
\gamma: \mathbb{R} \rightarrow M
$$

For each $t \in \mathbb{R}$, can then define a smooth map

$$
\Phi_{t}: M \rightarrow M
$$

by setting
$\Phi_{t}(p)=\gamma_{p}(t)$ where γ_{p} unique integral curve with $\gamma_{p}(0)=p$.
We can also define a smooth map

$$
\Phi: M \times \mathbb{R} \rightarrow M
$$

by setting

$$
\Phi(p, t)=\Phi_{t}(p)
$$

This map is called the flow of V.

Theorem.

Theorem. Given any compactly supported

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$,

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms,

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

$$
\Phi_{0}=i d_{M}
$$

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

$$
\begin{gathered}
\Phi_{0}=i d_{M} \\
\Phi_{u} \circ \Phi_{t}=\Phi_{u+t} .
\end{gathered}
$$

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

$$
\begin{gathered}
\Phi_{0}=i d_{M} \\
\Phi_{u} \circ \Phi_{t}=\Phi_{u+t}
\end{gathered}
$$

Thus, these form a one-parameter group of diffeomorphisms $M \rightarrow M$.

Theorem. Given any compactly supported $V \in$ $\mathfrak{X}(M)$, the maps

$$
\Phi_{t}: M \rightarrow M
$$

are all diffeomorphisms, and satisfy

$$
\begin{gathered}
\Phi_{0}=i d_{M} \\
\Phi_{u} \circ \Phi_{t}=\Phi_{u+t}
\end{gathered}
$$

Thus, these form a one-parameter group of diffeomorphisms $M \rightarrow M$.
Notice that

$$
\Phi_{-t}=\left(\Phi_{t}\right)^{-1}
$$

Corollary. Let M be a connected n-manifold,

Corollary. Let M be a connected n-manifold, and let $p_{1}, \ldots, p_{k} \in M$ be any k points.

Corollary. Let M be a connected n-manifold, and let $p_{1}, \ldots, p_{k} \in M$ be any k points. Then there is a coordinate domain $U \subset M$,

Corollary. Let M be a connected n-manifold, and let $p_{1}, \ldots, p_{k} \in M$ be any k points. Then there is a coordinate domain $U \subset M, U \approx \mathbb{R}^{n}$,

Corollary. Let M be a connected n-manifold, and let $p_{1}, \ldots, p_{k} \in M$ be any k points. Then there is a coordinate domain $U \subset M, U \approx \mathbb{R}^{n}$, such that $p_{1}, \ldots, p_{k} \in U$.

Corollary. Let M be a connected n-manifold, and let $p_{1}, \ldots, p_{k} \in M$ be any k points. Then there is a coordinate domain $U \subset M, U \approx \mathbb{R}^{n}$, such that $p_{1}, \ldots, p_{k} \in U$.

When $k=2$, take U to be coordinate domain $\ni p_{1}$.

Corollary. Let M be a connected n-manifold, and let $p_{1}, \ldots, p_{k} \in M$ be any k points. Then there is a coordinate domain $U \subset M, U \approx \mathbb{R}^{n}$, such that $p_{1}, \ldots, p_{k} \in U$.

When $k=2$, take U to be coordinate domain $\ni p_{1}$.
Suffices to construct diffeo $\Phi: M \rightarrow M$ fixing p_{1} and with $\Phi\left(p_{2}\right) \in U$.

Corollary. Let M be a connected n-manifold, and let $p_{1}, \ldots, p_{k} \in M$ be any k points. Then there is a coordinate domain $U \subset M, U \approx \mathbb{R}^{n}$, such that $p_{1}, \ldots, p_{k} \in U$.

When $k=2$, take U to be coordinate domain $\ni p_{1}$.
Suffices to construct diffeo $\Phi: M \rightarrow M$ fixing p_{1} and with $\Phi\left(p_{2}\right) \in U$.

Construct Φ as some Φ_{t} for suitable V.

Corollary. Let M be a connected n-manifold, and let $p_{1}, \ldots, p_{k} \in M$ be any k points. Then there is a coordinate domain $U \subset M, U \approx \mathbb{R}^{n}$, such that $p_{1}, \ldots, p_{k} \in U$.

When $k=2$, take U to be coordinate domain $\ni p_{1}$.
Suffices to construct diffeo $\Phi: M \rightarrow M$ fixing p_{1} and with $\Phi\left(p_{2}\right) \in U$.

Construct Φ as some Φ_{t} for suitable V.
Construct V to be supported near embedded curve joining p_{2} to a point in U.

Corollary. Let M be a connected n-manifold, and let $p_{1}, \ldots, p_{k} \in M$ be any k points. Then there is a coordinate domain $U \subset M, U \approx \mathbb{R}^{n}$, such that $p_{1}, \ldots, p_{k} \in U$.

When $k=2$, take U to be coordinate domain $\ni p_{1}$.
Suffices to construct diffeo $\Phi: M \rightarrow M$ fixing p_{1} and with $\Phi\left(p_{2}\right) \in U$.

Construct Φ as some Φ_{t} for suitable V.
Construct V to be supported near embedded curve joining p_{2} to a point in U.

General k similar; proceed by induction.

