Problem 1. Submersions are open maps, hence, F is open. Now let C ≤ M be a closed set. Since M is compact, C is also compact. So F(C) is compact. So F(C) is closed. Hence, F is an open map, and F is also a closed map. Therefore, F(M) ⊆ N the image of F is both open and closed. Since M is non-empty, F(M) is non-empty, and since N is connected, F(M) = N, so F is onto. Since M is compact, so is F(M), so N is compact.

Problem 2. Consider the diffeomorphism F: \(\mathbb{R}^2 \rightarrow \mathbb{R}^2 \)

\[
F(u, v) = (2u, v).
\]

And consider \(\tilde{g}: [0, \pi] \rightarrow \mathbb{R}^2 \)

\[
\tilde{g}(t) = (\cos(2\pi t), \sin(2\pi t)).
\]

Then \((F \circ \tilde{g}) = \delta \), and

\[
F^* \phi = \frac{v d(2u) - 2uv dv}{4u^2 + 4v^2} = \frac{1}{2} \frac{vdu - udv}{u^2 + v^2}
\]

Now let us switch to polar coordinates in the \((u, v)\)-plane,

\[
\begin{align*}
\begin{cases}
u = r \cos \theta \\ v = r \sin \theta
\end{cases}
& \\
\begin{cases}
u^2 + v^2 = r^2 \\ 0 < \theta < \pi
\end{cases}
& \\
F^* \phi = \frac{1}{2} \frac{vdu - udv}{u^2 + v^2} = \frac{1}{2} \frac{1}{r^2} \left(-r^2 \sin^2 \theta d\theta \\ + r^2 \theta \cos \theta dr - r \cos \theta \sin \theta dr - r^2 \cos^2 \theta d\theta \right)
\end{align*}
\]

\[
= - \frac{1}{2} d\theta
\]
Now, \(\int \varphi = \int \varphi = \int F^* \varphi \) and it is now clear that the integral is \(-\frac{1}{2} (2\pi) = -\pi \). But to be perfectly rigorous, we must introduce another chart \(\tilde{U}. \tilde{V} = \mathbb{R}^2 \setminus \text{origin, } \) and coordinates \(x = \tilde{r} \cos \tilde{\theta} \), \(y = \tilde{r} \sin \tilde{\theta} \) \(0 < \tilde{\theta} < 2\pi \).

Clearly, on \(U \cap \tilde{U} = \mathbb{R}^2 \setminus \{x-axis\} \), \(\tilde{r} = \tilde{r} \), \(\tilde{\theta} = \tilde{\theta} \) and so \(d\theta = d\tilde{\theta}. \) Now, \(\int F^* \varphi = \int F^* \varphi + \int F^* \varphi \)

where \(\tilde{\sigma}_1 : [0, \frac{1}{2}] \rightarrow \mathbb{R}^2 \) \(\tilde{\sigma}_1(t) = (\cos(2\pi (t-\frac{1}{4})), \sin(2\pi (t-\frac{1}{4})) \) and \(\tilde{\sigma}_2 : [\frac{1}{2}, 1] \rightarrow \mathbb{R}^2 \) \(\tilde{\sigma}_2(t) = (\cos(2\pi (t-\frac{1}{4})), \sin(2\pi (t-\frac{1}{4})) \) and the image of \(\tilde{\sigma}_1 \subset U \), and the image of \(\tilde{\sigma}_2 \subset \tilde{U} \), so

\[
\int \tilde{\sigma}_1 \varphi = \int \tilde{\sigma}_1 F^* \varphi + \int \tilde{\sigma}_2 F^* \varphi = -\frac{1}{2} \left(\int \varphi d\theta + \int \varphi d\tilde{\theta} \right) = -\frac{1}{2} \left(\Theta(\tilde{\sigma}_1(1)) - \Theta(\tilde{\sigma}_1(0)) + \tilde{\sigma}_2(1) - \tilde{\sigma}_2(0) \right) = -\frac{1}{2} \left(\frac{\pi}{2} - \frac{\pi}{2} + \frac{3\pi}{2} - \frac{\pi}{2} \right) = -\frac{1}{2} (2\pi) = -\pi
\]

Further, \(\varphi \) is closed since \(F^* d\varphi \big|_U = d(F^* \varphi) \big|_U = d(-\frac{1}{2} d\varphi) \big|_U = 0 \) and similarly on \(\tilde{U} \). But \(F^* \) is an isomorphism, since \(F \) is a diffeomorphism, so \(F^* d\varphi = 0 \implies d\varphi = 0 \). However, \(\varphi \) is not exact, since if \(\varphi \) were exact then, there would be a function \(f : \mathbb{R}^2 \setminus \{0\} \rightarrow \mathbb{R} \) s.t. \(\varphi = df \). But then \(\int \varphi = \int df = f(\tilde{\sigma}(1)) - f(\tilde{\sigma}(0)) = 0 \neq -\pi \).
Problem 3. a) \(d(F^*\omega) = F^*(d\omega) = F^*(0) = 0 \)

The first equality follows because \(d \) commutes with pullback under a smooth map, the second equality follows since \(\omega \in \mathcal{A}^n(N) \) and \(\dim N = n \), so \(\mathcal{A}^{n+1}(N) = \{0\} \)
so \(d\omega \in \mathcal{A}^{n+1}(N) \) is automatically 0.

b. The point of the problem is that if we let

\[F: \mathbb{R}^3 \setminus \{(0,0,0)\} \rightarrow S^2 \]
be given by \(F(x,y,z) = \frac{(x,y,z)}{\sqrt{x^2+y^2+z^2}} \)
and let \(\omega \) be the area form on \(S^2 \) induced from \(\mathbb{R}^3 \), then

\[F^*\omega = \psi. \]

Let's expand on this and make the argument rigorous. Let \(f: \mathbb{R}^3 \to \mathbb{R} \) be given by \(f(x,y,z) = x^2 + y^2 + z^2 - 1 \).
Then \(df = 2xdx + 2ydy + 2zdz \), so \(df(x,y,z) = 0 \) only at the origin.

In particular, \(0 \) is a regular value and so \(f^{-1}(0) = S^2 \subseteq \mathbb{R}^3 \)
is an embedded submanifold, and \(T_pS^2 \subseteq T_p\mathbb{R}^3 \) is equal to \(\ker(df|_p) \).
Define \(\omega(X,Y) = \text{signed area of the parallelogram spanned by } X,Y \in T_pS^2 \subseteq T_p\mathbb{R}^3 \), or formally,
if \(X = x^1 \frac{\partial}{\partial x} + x^2 \frac{\partial}{\partial y} + x^3 \frac{\partial}{\partial z} \) and \(Y = y^1 \frac{\partial}{\partial x} + y^2 \frac{\partial}{\partial y} + y^3 \frac{\partial}{\partial z} \) and \(p = (a^1,a^2,a^3) \), then \(df_p(X_p) = a^2 \delta_{i3} - a^3 \delta_{i2} = 0 \), \(df_p(Y_p) = a^1 \delta_{i3} - a^2 \delta_{i2} = 0 \),

\[\omega_p(X_p,Y_p) = \begin{vmatrix} x^1 & x^2 & x^3 \\ y^1 & y^2 & y^3 \\ a^1 & a^2 & a^3 \end{vmatrix} \]
(this is actually the volume of the parallelopiped with base the parallelogram spanned by \(X,Y \) and height the unit vector \((a^1,a^2,a^3) \) which is orthogonal to \(X,Y \)).

\(\omega \) so defined is clearly a 2-form on \(T_pS^2 \) and is smooth in \(p \).
Now we need to check that \(F^*\omega = \psi \). We can do this directly, but it is quicker to use a trick.
First, note that \(\psi = \frac{1}{p^3} \left(xdy \wedge dz + ydz \wedge dx + zdx \wedge dty \right) \in \Omega^2(R^3) \)

is rotationally invariant (we used \(p = (x^2 + y^2 + z^2)^{1/2} \)), i.e., for any \(T \in SO(3) \), \(T^* \psi = \psi \). Indeed, for a rotation \(T_{z, \theta} \) by angle \(\theta \) around the z-axis \(T_{z, \theta}^* \psi = T_{z, \theta}^* \frac{1}{p^3} \left(xdy \wedge ydx + zdz \wedge dx + zdx \wedge dty \right) \)

\(= \frac{1}{p^3} T_{z, \theta}^* (r^2 \theta \wedge dz + zdx \wedge dty) = \frac{1}{p^3} (r^2 \theta \wedge dz + zdx \wedge dty) \),

where we used \(r = (x^2 + y^2)^{1/2} \), and the fact that \(p, r, z \) are fixed by \(T_{z, \theta} \), and \(T_{z, \theta}^* d \theta = d \theta \) and \(T_{z, \theta}^* (dx \wedge dy) = dx \wedge dy \) since the latter is the area form on \(R^2 \), which is preserved by a rotation around the z-axis. Since \(\psi \) is unchanged by a cyclic permutation of the axes, \(\psi \) is invariant under rotations around the x and y axes as well, and hence, rotationally invariant as claimed.

Now, \(F \) commutes with rotations, and \(\omega \) is obviously rotationally invariant, so we can check that \(F^* \left(1, \frac{\partial}{\partial x} \right) \omega \left(1, \frac{\partial}{\partial x} \right) = \frac{1}{t^2} dy \wedge dx \)

to show that \(F^* \omega = \psi \) everywhere. Compute:

\(\left(\frac{1}{t^2} dy \wedge dx \right)(X, Y) = \frac{1}{t^2} (x^2 y^3 - x^3 y^2) \)

\(F^* \left(1, \frac{\partial}{\partial x} \right) \omega \left(1, \frac{\partial}{\partial x} \right) (X, Y) = \omega \left(1, \frac{\partial}{\partial x} \right) (F^* \left(1, \frac{\partial}{\partial x} \right) X, F^* \left(1, \frac{\partial}{\partial x} \right) Y) = \omega \left(1, \frac{\partial}{\partial x} \right) \left(F_{(1, x)} X, F_{(1, x)} Y \right) = \omega \left(1, \frac{\partial}{\partial x} \right) \left(x^2 \frac{\partial}{\partial y} + x^3 \frac{\partial}{\partial z}, y^2 \frac{\partial}{\partial x} + y^3 \frac{\partial}{\partial z} \right) = \frac{1}{t^2} \left(\begin{array}{ccc} 0 & x^2 & x^3 \\ \frac{\partial}{\partial x} & y^2 & y^3 \\ x^2 \frac{\partial}{\partial y} + x^3 \frac{\partial}{\partial z} & y^2 \frac{\partial}{\partial x} + y^3 \frac{\partial}{\partial z} \end{array} \right) = \frac{1}{t^2} \left(x^2 y^3 - x^3 y^2 \right). \)

Thus, since \(\psi = F^* \omega \), \(\omega \in \Omega^2(S^2) \), by part (a) \(d \psi = d(F^* \omega) = F^* (d \omega) = F^* (0) = 0 \).
Problem 4.a. Suppose β is exact so $\exists f \in C^\infty(M)$ s.t. $\beta = df$.

Since M is compact, f attains its maximum on M, at say $p \in M$. By elementary calculus $\forall X \in T_p M \quad X(f)_p = 0$

But $0 = X(f)|_p = df|_p (x) = \beta_p (x)$, so $\beta_p = 0$, contradicting the non-vanishing of β.

b. As we know in Problem 2, $\exists \theta \in A^1(S^1)$ a non-vanishing 1-form on S^1. (Note, there is no $\theta \in C^\infty(S^1)$ s.t. the 1-form in question is actually $d\Theta$, but $\Theta = \text{Tan}^{-1}(x) \in C^\infty(\mathbb{R})$,

$\mathcal{U} = \{(x,y) \in S^1 \mid x \neq 0\}$, and $\tilde{\Theta} = \frac{1}{2} \text{Tan}^{-1}(xy) \in C^\infty(\mathbb{R})$,

$\tilde{\mathcal{U}} = \{(x,y) \in S^1 \mid y \neq 0\}$, and $\mathcal{U} \cap \tilde{\mathcal{U}} = Q_1 \cup Q_2 \cup Q_3 \cup Q_4$

and $\Theta - \tilde{\Theta} = C_1$, where C_1 is a constant, and Q_i are the 4 quadrants excluding the axes).

Let $\beta \in A^1(M)$ be given by $F^* d\Theta$, then β is non-vanishing.

Indeed, if $p \in M$ and $\beta_p = 0$, then $\forall X \in T_p M \quad \beta_p (X) = 0$, but

$0 = \beta_p (X) = F_p^* (d\Theta |_{F_p(S^1)}) (X) = d\Theta |_{F_p(S^1)} (F_p X)$, but F is a submersion, so F_p is onto $T_{F_p(S^1)}$, so $\exists X \in T_p M$ s.t. $F_p X = \frac{\partial}{\partial y} |_{F_p(S^1)}$

and so $d\Theta |_{F_p(S^1)} (F_p X) = d\Theta |_{F_p(S^1)} (\frac{\partial}{\partial y} |_{F_p(S^1)}) = 0$, contradicting.

But if β is non-vanishing, by part a, it is not exact.

On the other hand by 3a, β is closed ($d\beta = d(F^* d\Theta) = F^* d(d\Theta) = 0$ since $d(d\Theta) \in A^2(S^1) = \{0\}$). Hence, $[\beta]$ is a nonzero element of the space of closed 1-forms modulo the subspace of exact 1-forms, so $[\beta] \neq 0$ in $H^1_{deRham}(M)$.

-5
Problems 5. Let \(g \in \mathbb{C} \). Then \(g \) is continuous

We fix a coordinate neighborhood \((x', \ldots, x^n) : U \to \mathbb{R}^n \)

R.e.: \((x', \ldots, x^n)\) are continuous on \(M \cap U \) \((n = \dim N, \)

\(m = \dim M \) and \(l = \dim L) \). Also \(\bar{U} \subset N \), a coordinate

neighborhood of \(g \) and \((x', \ldots, x^n) : \bar{U} \to \mathbb{R}^n \)

\(+ (\tilde{x}', \ldots, \tilde{x}^n) \) are continuous on \(L \cap \bar{U} \). Let \(V = U \cap \bar{U} \)

and restrict the \(x' \) and \(x^n \) to \(V \). Then \(MNV = \)

\(\{ p \in V \mid x^{m+1}(p) = \ldots = x^n(p) = 0 \} \) and \(L \cap V = \)

\(\{ p \in V \mid \tilde{x}^{l+1}(p) = \ldots = \tilde{x}^n(p) = 0 \} \). Now consider

\(F : V \to \mathbb{R}^{2n-m-l}, \) \(F(p) = (x^{m+1}(p), \ldots, x^n(p), \tilde{x}^{l+1}(p), \ldots, \tilde{x}^n(p)) \).

Then \(LN M N V = F^{-1}(0, \ldots, 0) \). Claim: \((0, \ldots, 0) \)

is a regular value of \(F \). Indeed, \(\forall q \in LN M N V, \exists \Sigma \subset \Sigma \in T_q M \)

\((DF_q) \xi = (dx^{m+1}_q(\xi), \ldots, dx^n_q(\xi), dx^{l+1}_q(\xi), \ldots, dx^n_q(\xi)) \)

If \((DF_q) \xi = 0 \), then \(dx^i_q(\xi) = 0 \) for \(i \leq m \) and

\(dx^{l+1}_q(\xi) = 0 \) for \(l+1 \leq j \leq n \), so \(\xi \in T_q M \) and \(\xi \in T_q L \).

And obviously if \(\xi \in T_q M \cap T_q L \) then \((DF_q) \xi = 0 \).

So \(\ker DF_q = T_q M \cap T_q L \). Now, \(T_q M + T_q L = T_q N \)

So \(m + l - \dim (T_q M \cap T_q L) = n \), so \(\dim \ker DF_q = \)

\(n + m + l - \dim T_q M \). \(DF_q \) is a map from an \(n \)-dimensional space to

\(\mathbb{R}^{(m-m)+(n-l)} \), and since \(T_q M + T_q L = T_q N \), \(m + l > n \). So \(\dim \kerDF_q \) is

onto. So \((0, \ldots, 0) \in \mathbb{R}^{2n-m-l} \) is a regular value, so

\(F^{-1}(0, \ldots, 0) = LN M N V \) is a manifold of dimension \(m + l - n \). It follows that \(LN M \) is a submanifold.