
Mid-Term Solutions

Geometry/Topology II

Spring 2012

Do three of the following problems. 33 points each.

1. Let M and N be smooth, non-empty manifolds, and let F : M → N be
a smooth submersion. If M is compact and N is connected, show that F is
onto, and that N is compact.

As a corollary of the inverse function theorem, any submersion is an open
map. In particular, F (M) ⊂ N is open. On the other hand, since F is
continuous and M is compact, F (M) is compact, too; and since N is Haus-
dorff, it follows that F (M) ⊂ N is closed. Thus F (M) is a non-empty open
and closed subset of N . Since N is connected, it follows that N = F (M).
In particular, F is surjective. Since we have already shown that F (M) is
compact, it in particular follows that N is compact, as desired.

2. Let R2 be equipped with its usual (x, y) coordinates, and let ϕ be the
1-form on R2 − {0} given by

ϕ =
y dx− x dy
x2 + 4y2

.

Let γ : [0, 1]→ R2 be the smooth curve defined by

γ(t) = (2 cos(2πt), sin(2πt)) .

Compute dϕ and
∫
γ
ϕ. Is ϕ closed? Is it exact?

1



Let us first notice that

dϕ = d

(
y dx− x dy
x2 + 4y2

)
= d

(
1

x2 + 4y2

)
∧ (y dx− x dy) +

1

x2 + 4y2
d(y dx− x dy)

= −d(x2 + 4y2)

(x2 + 4y2)2
∧ (y dx− x dy)− 2 dx ∧ dy

x2 + 4y2

= −(2x dx+ 8y dy) ∧ (y dx− x dy)

(x2 + 4y2)2
− 2 dx ∧ dy

x2 + 4y2

=
(2x2 + 8y2) dx ∧ dy

(x2 + 4y2)2
− 2 dx ∧ dy

x2 + 4y2

=
2 dx ∧ dy
x2 + 4y2

− 2 dx ∧ dy
x2 + 4y2

= 0.

This shows that ϕ is closed. On the other hand,∫
γ

ϕ =

∫ 1

0

γ∗ϕ

=

∫ 1

0

sin(2πt) d 2 cos(2πt)− 2 cos(2πt) d sin(2πt)

(2 cos(2πt))2 + 4(sin(2πt))2

=

∫ 1

0

(−4π sin2(2πt)− 4π cos2(2πt)) dt

4

= −π
∫ 1

0

dt = −π 6= 0 .

If ϕ were exact, there would be a function f with ϕ = df , implying that∫
γ

ϕ =

∫ 1

0

d(f ◦ γ) = f(γ(1))− f(γ(0)) = 0

because γ(0) = γ(1) = (2, 0). This contradiction shows that, although ϕ is
closed, it is not exact.
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3. (a) Let N be a smooth n-manifold, and let F : M → N be a smooth
map from another manifold to N . If ω is any n-form on N , show that F ∗ω
is closed.

Since N is n-dimensional, An+1(N) = 0. But we are given that ω ∈ An(N),
and it follows that dω ∈ An+1(N). Hence dω = 0, and it follows that

d(F ∗ω) = F ∗dω = F ∗0 = 0

because exterior differentiation commutes with pull-backs. This proves that
F ∗ω is closed.

(b) Use part (a), with N = S2, to show that the 2-form

ψ =
x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

(x2 + y2 + z2)3/2

on R3 − {0} is closed, without resorting to brute-force calculation.

If X denotes the radially directed vector field X = x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z

, then

ψ = µ(X, , ), where

µ =
dx ∧ dy ∧ dz

(x2 + y2 + z2)3/2
.

It follows that ψ(X, Y ) = µ(X,X, Y ) = 0 for any Y , since µ is alternating.
Now if

F : R3 − {0} −→ S2

(x, y, z) 7−→ (x, y, z)

‖(x, y, z)‖
is the radial projection, then X spans the kernel of F∗ at each point. Thus,
if j : S2 ↪→ R3 − {0} is the inclusion of the standard unit 2-sphere, and if
we let ω denote the 2-form on S2 given by ω := j∗ψ, then ψ must agree
with F ∗ω at every point of the unit sphere. However, ψ is also invariant
under (x, y, z) 7→ (λx, λy, λz) for any constant λ > 0, since this substitution
multiplies both the numerator and denominator by λ3; meanwhile, for any
λ > 0, this formula defines a diffeomorphism Φλ : R3−{0} → R3−{0} such
that F ◦ Φλ = F , and it follows that Φ∗λ(F

∗ω) = F ∗ω for any λ > 0. Since
Φλ sends the unit 2-sphere to the 2-sphere of radius λ, it follows that ψ and
F ∗ω also agree along the sphere of radius λ, for any λ > 0. Hence ψ = F ∗ω,
and part (a) therefore implies that ψ is closed.
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4. (a) Let M be a smooth non-empty compact manifold, and suppose that
β is a smooth 1-form which is non-zero at every point of M . Show that β is
not exact.

Suppose that β = df for some smooth function f : M → R. Then f has a
maximum at some point p, and df = 0 at p, since otherwise f would have
to increase in some direction along some curve through p. But since β = df
by assumption, this would show that β = 0 at p, which contradicts our
hypothesis. Thus such a 1-form β can never be exact.

(b) Let M be a smooth, non-empty compact manifold which admits a smooth
submersion F : M → S1. Use part (a) of problems 3 and 4 to show that
H1(M) 6= 0.

If F : M → S1 is a submersion, then F ∗ : T ∗q S
1 → T ∗pM is an injection, for

all q ∈ S1 and p ∈ F−1({q}). Thus, if we choose a 1-form φ on S1 which is
nowhere zero, its pull-back β := F ∗φ will also be non-zero everywhere. If M
is compact, then, by part (a) above, β = F ∗φ cannot be exact. On the other
hand, by part (a) of problem 3, F ∗φ is closed:

d(F ∗φ) = F ∗dφ = F ∗0 = 0

Thus, if we can find a nowhere-zero 1-form φ on S1, we have produced a
closed 1-form on M with is exact, and so proved that

H1(M) =
{ closed 1-forms on M }
{ exact 1-forms on M }

6= 0.

Now there is an obvious choice of such a φ, and its usual name illustrates
how important it is that M has been assumed to be compact. Indeed, the
famous form in question is usually misleadingly denoted by “dθ.” Here the
the angle function θ is not actually defined on S1, but rather only on its
universal cover R. Notice that, by part (a), this form is certainly not exact
on S1. However, its pull-back to R is exact — “upstairs,” it simply becomes
the differential of the standard coordinate. Notice that the covering map
R→ S1 is a submersion, but this does not contradict our conclusion, because
R is non-compact.

Alternatively, you might cite the fact that any orientable n-manifold N
admits a nowhere-zero n-form φ; we proved this by a partition-of-unity argu-
ment. The fact that S1 admits a non-zero 1-form φ is thus precisely equivalent
to the fact that the circle is orientable.
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5. Let N be a smooth n-manifold, and let L ⊂ N and M ⊂ N be smooth
submanifolds, of dimensions ` and m, respectively. We say that L and M
are transverse submanifolds if, at every p ∈ L ∩M , the tangent spaces TpL
and TpM together span TpN :

TpN = TpL+ TpM ∀p ∈ L ∩M.

If L and M are transverse and are not disjoint, show that their intersection
L ∩M is a submanifold. What is its dimension?

(Hint: in a neighborhood of p, L ∩M us characterized by the vanishing of
a finite collection of smooth real functions with independent differentials.)

Set k1 = n − ` and k2 = n −m; these numbers are called the codimensions
of L and M , respectively. Near a point p of L ∩M , we can find coordinates
(x1, . . . , x`, u1, . . . , uk1) on an open set U ⊂ N , p ∈ U , such that L ∩ U
is given by the equations u1 = · · · = uk1 = 0; similarly, we can find a
coordinate system (y1, . . . , ym, v1, . . . , vk2) on an open set V ⊂ N , p ∈ V ,
such that M ∩ V is given by the equations v1 = · · · = vk2 = 0. Now consider
the neighborhood of p ∈ N defined byW = U ∩V , together with the smooth
map F : W → Rk1+k2 defined by (u1, . . . , uk1 , v1, . . . , vk2). Since L and M
are transverse, TpN ∼= (TpL ⊕ TpM)/(TpL ∩ TpM), and it follows that the
tautological projection

TpN → (TpN/TpL)⊕ (TpN/TpM)

is onto. Hence du1, · · · , duk1 , dv1, · · · , dvk2 are linearly independent at p,
and the derivative of F : W → Rk1+k2 at p is therefore surjective. Thus,
as a corollary of the inverse function theorem, F restricts to some smaller
neighborhood W ′ of p as a submersion, and the equations u1 = · · · = uk1 =
v1 = · · · = vk2 = 0 define a submanifold of dimension

n− (k1 + k2) = n− (n− `)− (n−m) = `+m− n

of the open subset W ′ ⊂ N . However, this submanifold exactly consists of
points of W ′ which solve the equations u1 = · · · = uk1 = 0 and also solve
the equations v1 = · · · = vk2 = 0; in other words, it is exactly the subset
(L∩W ′)∩(M∩W ′) = (L∩M)∩W ′. We have therefore shown that L∩M is a
submanifold near each of its points p, and is therefore a smooth submanifold.
Moreover, our argument shows that the dimension of L ∩M is `+m− n.
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