Mid-Term Solutions

Geometry/Topology 11
Spring 2012

Do three of the following problems. 33 points each.

1. Let M and N be smooth, non-empty manifolds, and let ' : M — N be
a smooth submersion. If M is compact and N is connected, show that F' is
onto, and that N is compact.

As a corollary of the inverse function theorem, any submersion is an open
map. In particular, F/(M) C N is open. On the other hand, since F' is
continuous and M is compact, F'(M) is compact, too; and since N is Haus-
dorff, it follows that F'(M) C N is closed. Thus F/(M) is a non-empty open
and closed subset of N. Since N is connected, it follows that N = F(M).
In particular, F is surjective. Since we have already shown that F(M) is
compact, it in particular follows that NV is compact, as desired.

2. Let R? be equipped with its usual (x,y) coordinates, and let ¢ be the
1-form on R? — {0} given by

_ydr—zdy
Y= 22 4 4dy? )

Let v : [0,1] — R? be the smooth curve defined by
v(t) = (2 cos(2nt), sin(27t)) .
Compute dp and f7 . Is ¢ closed? Is it exact?
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Let us first notice that

B ydr —x dy
- d( w2+ dy? )

1 1
= d(m)/\(ydx—:cdy)—i—md(yd:v—xdy)

d(x? + 49 2dxrNd
_—<i2 _:—4;)2) A(y doe —x dy) — P 4y2y
 Rrdz+8ydy)AN(ydr—xdy) 2dvAdy
- (22 + 442)? o2 4y?
2+ 82 dendy  2dxANdy

(22 4 4y?)? x? + 4y?

2dr Ndy 2dxNdy
x2_’_4y2 $2+4y2
= 0.

This shows that ¢ is closed. On the other hand,

/ p = /0 ol
B /1 sin(2nt) d 2 cos(2nt) — 2 cos(2nt) dsin(27t)
) (2 cos(27t))? 4 4(sin(2nt))?
/1 (—4m sin?(27t) — 4 cos?(27t)) dt
0 4

1
= —7r/ dt =—m#0.
0

If ¢ were exact, there would be a function f with ¢ = df, implying that

/ / (1) = £(2(0)) = 0

because v(0) = (1) = (2,0). This contradiction shows that, although ¢
closed, it is not exact.




3. (a) Let N be a smooth n-manifold, and let F : M — N be a smooth
map from another manifold to N. If w is any n-form on N, show that F*w
is closed.

Since N is n-dimensional, A"*'(N) = 0. But we are given that w € A"(N),
and it follows that dw € A" (N). Hence dw = 0, and it follows that

d(Ffw) = F'dw=F"0=0

because exterior differentiation commutes with pull-backs. This proves that
F*w is closed.

(b) Use part (a), with N = S?, to show that the 2-form

rdyNdz+y dz Ndx + z de N\ dy
(x2+y2+22)3/2

Y=
on R?® — {0} is closed, without resorting to brute-force calculation.
If X denotes the radially directed vector field X = 368% + ya% + z%, then
v =p(X,_,_), where
dr Ndy A dz
2+ y2 + 22)3/2'

It follows that ¢(X,Y) = u(X, X,Y) =0 for any Y, since pu is alternating.
Now if

N

F:R*—{0} — &2
(,y,2)
(2, y,2)|l

is the radial projection, then X spans the kernel of F, at each point. Thus,
if j: 8% < R3 — {0} is the inclusion of the standard unit 2-sphere, and if
we let w denote the 2-form on S? given by w := j*1), then 1) must agree
with F*w at every point of the unit sphere. However, v is also invariant
under (z,y, z) — (Az, Ay, A\z) for any constant A > 0, since this substitution
multiplies both the numerator and denominator by A3; meanwhile, for any
A > 0, this formula defines a diffeomorphism @, : R* — {0} — R* — {0} such
that F'o &) = F, and it follows that ®5(F*w) = F*w for any A > 0. Since
®, sends the unit 2-sphere to the 2-sphere of radius A, it follows that v and
F*w also agree along the sphere of radius A, for any A > 0. Hence ¢ = F*w,
and part (a) therefore implies that v is closed.

(z,y,2)
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4. (a) Let M be a smooth non-empty compact manifold, and suppose that
[ is a smooth 1-form which is non-zero at every point of M. Show that f is
not exact.

Suppose that § = df for some smooth function f : M — R. Then f has a
maximum at some point p, and df = 0 at p, since otherwise f would have
to increase in some direction along some curve through p. But since § = df
by assumption, this would show that § = 0 at p, which contradicts our
hypothesis. Thus such a 1-form [ can never be exact.

(b) Let M be a smooth, non-empty compact manifold which admits a smooth
submersion F' : M — S'. Use part (a) of problems 3 and 4 to show that
HY (M) # 0.

If £: M — S'is a submersion, then F* : Tq”‘S1 — T;M is an injection, for
all ¢ € St and p € F~'({q}). Thus, if we choose a 1-form ¢ on S' which is
nowhere zero, its pull-back £ := F*¢ will also be non-zero everywhere. If M
is compact, then, by part (a) above, 5 = F*¢ cannot be exact. On the other
hand, by part (a) of problem 3, F*¢ is closed:

d(F*¢) = F*dp = F*0=10
Thus, if we can find a nowhere-zero 1-form ¢ on S', we have produced a
closed 1-form on M with is exact, and so proved that

HI(M) { closed 1-forms on M }
~ { exact 1-forms on M }

£ 0.

Now there is an obvious choice of such a ¢, and its usual name illustrates
how important it is that M has been assumed to be compact. Indeed, the
famous form in question is usually misleadingly denoted by “df.” Here the
the angle function 6 is not actually defined on S!, but rather only on its
universal cover R. Notice that, by part (a), this form is certainly not exact
on S'. However, its pull-back to R is exact — “upstairs,” it simply becomes
the differential of the standard coordinate. Notice that the covering map
R — S'is a submersion, but this does not contradict our conclusion, because
R is non-compact.

Alternatively, you might cite the fact that any orientable n-manifold N
admits a nowhere-zero n-form ¢; we proved this by a partition-of-unity argu-
ment. The fact that S admits a non-zero 1-form ¢ is thus precisely equivalent
to the fact that the circle is orientable.



5. Let N be a smooth n-manifold, and let L € N and M C N be smooth
submanifolds, of dimensions ¢ and m, respectively. We say that L and M
are transverse submanifolds if, at every p € L N M, the tangent spaces T,L
and T, M together span T, N:

T,N =T,L+T,M VYpe LN M.

If L and M are transverse and are not disjoint, show that their intersection
LN M is a submanifold. What is its dimension?

(Hint: in a neighborhood of p, L N M us characterized by the vanishing of
a finite collection of smooth real functions with independent differentials.)

Set ki =n — ¢ and ky = n — m; these numbers are called the codimensions
of L and M, respectively. Near a point p of L N M, we can find coordinates
(xt,... 2%l ... uM) on an open set U C N, p € U, such that L NU
is given by the equations u! = --- = u* = 0; similarly, we can find a
coordinate system (y',...,y™, v',...,v*) on an open set V C N, p € V,
such that M NV is given by the equations v! = --- = v¥ = 0. Now consider
the neighborhood of p € N defined by W = U NV, together with the smooth
map F : W — RFTR defined by (ul,... u* vl ... v*). Since L and M
are transverse, T,N = (T,L & T,M)/(T,L N'T,M), and it follows that the

tautological projection
T,N — (T,N/T,L) & (I,N/T,M)

is onto. Hence du',--- ,duf,dv',---  dv* are linearly independent at p,
and the derivative of F' : W — RFM**2 at p is therefore surjective. Thus,
as a corollary of the inverse function theorem, F' restricts to some smaller
neighborhood W' of p as a submersion, and the equations u! = --- = u* =

vl = ... =% = 0 define a submanifold of dimension

n—(ki+ky)=n—n—~0)—-—mn—m)=~0+m-—n

of the open subset W' C N. However, this submanifold exactly consists of
points of W which solve the equations u' = --- = u* = 0 and also solve
the equations v' = --- = v* = 0; in other words, it is exactly the subset
(LOW)N(MW') = (LNM)NW'. We have therefore shown that LN M is a
submanifold near each of its points p, and is therefore a smooth submanifold.

Moreover, our argument shows that the dimension of L N M is ¢ +m — n.



