
Mid-Term Exam

Geometry/Topology I

Solution Hints

Do any four of the following problems. 25 points each.

1. Let (X, d) be a connected metric space containing more than one point.
Prove that X is uncountable.

Let x and y be two distinct points of X, and set D = d(x, y) > 0. Let
f : X → R be the continuous function defined by f(z) = d(x, z). Since X
is connected, f(X) is connected, too. Hence [0, D] ⊂ f(X). Thus f(X) is
uncountable. Hence X must be uncountable, too.

2. Let f : X → Y be an injective continuous map between topological
spaces. If X is compact and Y is Hausdorff, prove that X is homeomorphic
to f(X) ⊂ Y .

The key point is that f is a closed map. To see this, suppose that A ⊂ X is
closed. Since X is compact, it follows that A is also compact. Hence f(A) is
compact. Since Y is Hausdorff, this implies that f(A) ⊂ Y is closed. More-
over, f(A) ⊂ f(X) is closed in the subspace topology. The induced map
X → f(X) is therefore a closed, continuous bijection, and so is a homeomor-
phism.

3. Let Rn be given its usual Euclidean metric d and its usual topology. If
A ⊂ Rn is a non-empty closed set, and if x ∈ Rn is any given point, prove
that there is a point y ∈ A of minimum distance from x. In other words,
show that

∃y ∈ A such that d(x, z) ≥ d(x, y) ∀z ∈ A.

Extra credit for pointing out the omitted hypothesis!

1



Given some w ∈ A, let R = d(x,w), and observe that C = A∩BR(x) ⊂ Rn is
closed and bounded. Thus C is compact by the Heine-Borel theorem, and it
is also non-empty, since w ∈ C. The continuous function f : C → R defined
by f(z) = d(x, z) therefore achieves its minimum value at some y ∈ C ⊂ A,
and this is the desired closest point.

4. Let X be a compact topological space, and let A1 ⊃ A2 ⊃ · · · ⊃ Aj ⊃
· · · be a nested sequence of closed, non-empty subsets of X. Prove that
∩∞j=1Aj 6= ∅.

Suppose not. Then the open sets Uj = X−Aj cover X. Since X is compact,
only finitely many are needed, so X = U1 ∪ · · · ∪ Un for some n. But since
Uj ⊂ Uj+1, this implies that X = Un. However, X − Un = An 6= ∅, so this is
a contradiction.

5. Let U ⊂ R be an open set. Prove that U is a countable union of disjoint
open intervals. (Hint: put off the issue of countability until the very end.)

Let Iα ⊂ U , α ∈ J , be the connected components of U . Then each Iα is
open in U , because U is locally (path) connected. Since U is open in R,
this means that each Iα is a connected open subset of R, and so is an open
interval. Thus, U =

⋃
α∈J Iα is a disjoint union of open intervals.

To show that the index set J must be countable, now observe that each
Iα must meet the rationals Q, since Q ⊂ R is dense. Choose one rational
number qα from each Iα. Since the intervals Iα are disjoint, the numbers
qα are all different, and the function J → Q given by α 7→ qα is therefore
injective. Thus J is bijectively equivalent to a subset of a countable set, and
is therefore countable.

6. Let X and Y be topological spaces, and assume that Y is Hausdorff. Let
f, g : X → Y be two continuous functions. Prove that {x ∈ X | f(x) = g(x)}
is a closed subset of X.

Set A = {x ∈ X | f(x) = g(x)} ⊂ X.

Method #1 (Elementary). Suppose x 6∈ A. Then f(x) 6= g(x). Since Y
is Hausdorff, ∃U, V ⊂ Y disjoint open sets with f(x) ∈ U , g(x) ∈ V . Set
W = f−1(U) ∩ g−1(V ). Then W is open, with x ∈ W ⊂ (X − A). Hence
X − A is open, and A is therefore closed.
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Method #2 (Sophisticated). Let ∆ ⊂ Y ×Y be the diagonal {(y, y) | y ∈ Y }.
Since Y is Hausdorff, ∆ is closed. However, f×g : X → Y ×Y is continuous.
Thus A = (f × g)−1(∆) is also closed, exactly as claimed.

7. Let X be a compact Hausdorff space. Prove that X is normal (T4).

See Munkres, page 202.

8. Let X and Y be regular (T3) topological spaces. Prove that X × Y is
regular, too. (Hint: recall that the T3 axiom can be reformulated in terms
of open sets.)

If W ⊂ X × Y is open, and if (x, y) ∈ W is any point, we need to show that
(x, y) has an open neighborhood U with U ⊂ W . However, any such W is
a union of basis open sets. So there exist open sets W1 ⊂ X and W2 ⊂ Y
with (x, y) ∈ W1 × W2 ⊂ W . But since X is regular, we can find open
neighborhoods V1 of x and V2 of y such that V j ⊂ Wj, j = 1, 2. Moreover,
V 1×V 2 is closed in X×Y , since its complement [(X−V 1)×Y ]∪[X×(Y −V 2)]
is open. Hence

(x, y) ∈ V1 × V2 ⊂ V1 × V2 ⊂ V 1 × V 2 ⊂ W1 ×W2 ⊂ W

and so U = V1×V2 fulfills our requirement, and X×Y is regular, as claimed.

Remark. In fact, V1 × V2 = V 1 × V 2, but you do not need this here.

9. Let (X, d) be a metric space, and let A and B be disjoint closed sets.
Using d, construct an explicit continuous function f : X → [0, 1] such that
A = f−1(0) and B = f−1(1). Then relate and compare this to the Urysohn
lemma.

One such function is

f(x) =
dA(x)

dA(x) + dB(X)

where dA(x) = inf{d(x, y) | y ∈ A} and dB(x) = inf{d(x, y) | y ∈ B}. In par-
ticular, X is T4, since U = f−1((−∞, 1

4
)) and V = f−1((3

4
,∞)) are disjoint

open sets which contain A and B, respectively. However, the constructed f
is better than the one promised by the Urysohn Lemma for an arbitrary T4

space, since we actually have A = f−1(0) and B = f−1(1), rather than just
A ⊂ f−1(0) and B ⊂ f−1(1).
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