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1. Background

® Conformal geometry
® Circle packing
® Enabling theory
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Classical Smoke-and-Mirrors

A Riemann surface is one with a consistent notion of “angle”.
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Classical Smoke-and-Mirrors

A Riemann surface is one with a consistent notion of “angle”.

i

“Conformal structure” refers to whatever resides in the web of consistency
relationships defined by the conformal transition maps.

“Conformal maps” are maps between Riemann surfaces which preserve angles
(magnitude and orientation).
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Conformal Mapping is Ubiquitous

® Riemann Mapping Theorem (1851). Every simply connected Riemann surface
can be mapped conformally onto the sphere, the plane, or the unit disc, and the resulting map
IS unique up to Mobius transformations.
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Conformal Mapping is Ubiquitous

® Riemann Mapping Theorem (1851). Every simply connected Riemann surface
can be mapped conformally onto the sphere, the plane, or the unit disc, and the resulting map
IS unique up to Mobius transformations.

® Extended via “covering theory” to handle Riemann surfaces in full generality.
® A core topic in mathematics

® Application in physics, engineering, visualization

PROBLEM? Practical computations.
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Discretization
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Discretization

What we should hope for:

Geometric intuition
Discrete versions of classical objects

Computability

Refinement procedures

© o o0 b

Convergence to the classical objects
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Thurston’s Excellent Idea
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Thurston’s Excellent Idea
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Thurston’s Excellent Idea
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Thurston’s Excellent Idea

Thurston’s Conjecture:  If increasingly fine hexagonal circle packings P, are used in {2 and the
maps f, are appropriately normalized, then f,, converges uniformly on compact subsets of ID to the
classical conformal mapping F' : D — €.
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Circle Packing Basics

Def. A circle packing P is a configuration of circles with a specified pattern of
tangencies. (Initiated by Koebe, Andreev, and (principally) Bill Thurston.)
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Circle Packing Basics

Def. A circle packing P is a configuration of circles with a specified pattern of
tangencies. (Initiated by Koebe, Andreev, and (principally) Bill Thurston.)

® The pattern of P is given by a (simplicial) complex K which triangulates an
oriented topological surface.

® The configuration P has a circle C, for each vertex v € K. When (u, v) is an
edge of K, then C, and C, are tangent. When (u, v, w) is an oriented face of
K, then (C,, C,, C\) is an oriented triple of mutually tangent circles.

® The radii are given in a label R. (Computing R is where the work goes;
compatibility depends on angle sums — centers are secondary.)
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Typical operation: given /X — compute R — lay out P
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Packing Plasticity

The theory has been extended with boundary conditions and branching (not
pertinent here) to give amazing plasticity.
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Packing Plasticity

The theory has been extended with boundary conditions and branching (not
pertinent here) to give amazing plasticity.

Common Combinatorics K Specified boundary radii

"Maximal" packing P_K Specified Boundary angles
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Enabling Theory

® Koebe-Andreev-Thurston Theorem: For any triangulation K of a

sphere, there exists an associated univalent circle packing P of the Riemann
sphere, unique up to Mdbius transformations
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Enabling Theory

Koebe-Andreev-Thurston Theorem:  For any triangulation K of a
sphere, there exists an associated univalent circle packing P of the Riemann
sphere, unique up to Mdbius transformations

Thurston’s Conjecture on convergence to conformal mapping: proved by Burt
Rodin and Dennis Sullivan using quasiconformal mapping theory.

Convergence extended by various authors to more general combinatorics,
still using quasiconformal theory

Culminating in a theorem of Zheng-Xu He and Oded Schramm that removes
the quasiconformal theory, implying:

The Koebe-Andreev-Thurston Theorem is equivalent to the Riemann
Mapping Theorem for plane domains.
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And ...
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And ...

® Circle packings, refinements, and convergence results are extended to
Riemann surfaces
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And ...

® Circle packings, refinements, and convergence results are extended to
Riemann surfaces

® With notion of branch points, circle packings provide wide ranging “discrete

analytic functions”: discrete rational maps, inner functions, entire functions,
covering maps, etc.

® Indeed, a fairly comprehensive theory of discrete analytic functions emerges:

Circle Packing: “quantum” complex analysis, classical in the limit.

Important to our story:

the existence of practical (and provable) algorithms for computing circle
packings and software CirclePack for manipulating them.

.—p.16/7



2. Discrete Conformal Structure

® Classical conformal companions

® Discrete versions
® Discrete conformal structure



L 2 3 B

Classical Conformal Structure — and Companions

Conformal maps

Brownian motion
Harmonic measure
Extremal length
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L 2 3 B

Discretized Versions

Discrete conformal maps
Random walks

Discrete harmonic measure
Discrete extremal length
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Discrete Conformal Mappings

Definition: A discrete conformal mapping isamap f: Q — P between
univalent circle packings associated with the same complex K.
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Discrete Conformal Mappings

Definition: A discrete conformal mapping isamap f: Q — P between
univalent circle packings associated with the same complex K.

Proposal: A discrete conformal structure  for an oriented topological surface
S is a simplicial complex K which triangulates S.
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3. Emergent Conformal Structure

A random idea
Experimental support

Intuition

L 2 I I

What is a “random” triangulation



Packing Triangulations
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Packing Triangulations — Random Triangulations
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Random Triangulations — and Companions

Random discrete maps
Random walks

Discrete harmonic measure
Discrete extremal length
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Emergent Conformal Structure

Setting: Let © be a bounded simply connected plane domain, z1, z2 € 2, and let
F : QQ — D be the unique conformal mapping with F'(z1) = 0, F'(22) > 0.
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Emergent Conformal Structure

Setting: Let © be a bounded simply connected plane domain, z1, z2 € 2, and let
F : QQ — D be the unique conformal mapping with F'(z1) = 0, F'(22) > 0.
Random Maps: Forn >> 1, define a “random” map f,, : Q@ — D as follows:

® Select a random triangulation K, of Q2 having n vertices

® Compute the maximal circle packing P, for K,, (in D)

® Define f, : K,, — carrier(P,,) (An appropriate ¢ € Auto(DD) applied to P,
ensures f,(z1) =0, fn(z2) > 0)
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® Compute the maximal circle packing P, for K,, (in D)

® Define f, : K,, — carrier(P,,) (An appropriate ¢ € Auto(DD) applied to P,
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Conjecture: When Q, F', and f,, are as above, then f,, L. F as n — o
that is, the random maps converge “in probability” to the conformal map F..
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Emergent Conformal Structure

Setting: Let © be a bounded simply connected plane domain, z1, z2 € 2, and let
F : QQ — D be the unique conformal mapping with F'(z1) = 0, F'(22) > 0.
Random Maps: Forn >> 1, define a “random” map f,, : Q@ — D as follows:

® Select a random triangulation K, of Q2 having n vertices

® Compute the maximal circle packing P, for K,, (in D)

® Define f, : K,, — carrier(P,,) (An appropriate ¢ € Auto(DD) applied to P,
ensures f,(z1) =0, fn(z2) > 0)

Conjecture: When Q, F', and f,, are as above, then f,, L. F as n — o
that is, the random maps converge “in probability” to the conformal map F..

Speculation: This should extend readily to general Riemann surfaces for an
appropriate notion of “random triangulation”.
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Distribution of Dilatations
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Color coding by gc-dilatation k; faces with dilatation & > 2 are blue.
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Random Square Construction
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Random Square Construction
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Random Square Construction
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Random Square Construction
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Square Map Detall

Create random K
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Square Map Detall

Create random K — circle pack it
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Square Map Detall

Create random K — circle pack it — the carrier is equivalent to K
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Square Map Detall

Create random K — circle pack it — the carrier is equivalent to K

Disregard the circles, leaving the “carrier”.
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Square Map Detall

Create random K — circle pack it — the carrier is equivalent to K

f

— T

Disregard the circles, leaving the “carrier”.

The map f is a piecewise affine map between the random triangulation and the
“carrier” of the circle packing.

.—p.43/7



Experiments with the Square
5000 trials with 3200 random vertices per trial yield this histogram:
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Experiments with the Square
5000 trials with 3200 random vertices per trial yield this histogram:

250

200

150

100

50

0
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03

Visually and with QQ-plot the distribution appears to be gaussian.
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Varying the Complexity

80
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Here are plots, 5000 trials each for N = 200, 400, 800, 1600, 3200, 6400, 12800.
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Varying the Complexity
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Here are plots, 5000 trials each for N = 200, 400, 800, 1600, 3200, 6400, 12800. A
log-log plot of variance shows:

“double N and you halve the variance.”
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A Rectangles of Aspect 2




A Rectangles of Aspect 2
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Trials for Aspect 2

5000 random trials each for N = 200, 800, 3200, 12800. (Truth log(2) ~ 0.6931)
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Torus Triangulations
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5000 trials with various N for torus of modulus (1+4i)/2:

N mean (true=2.0616) variance
200 2.0638 .00642
800 2.0605 00162

3200 2.0617 .00039
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Back to
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Extremal Length Trials

Measure extremal length of the paths between the red and blue arcs in 02
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5000 trials each, N = 200, 800, 3200, 12800.
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Harmonic Measure Trials
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Harmonic Measure Trials

200 vertices
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Harmonic Measure Trials

200 vertices

800 vertices

12800 vertices
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Harmonic Measure Trials

200 vertices

7 800 vertices

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

.—p.56/7



Intuition
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4. What Is a Random Triangulation?

® Subdivision Tilings
® Brain Mapping

®» Random surfaces
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Subdivision Tilings

Studied by Jim Cannon, Bill Floyd, and Walter Parry in the context of Thurston’s
Geometrization Conjecture and Kleinian groups.
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Subdivision Tilings

Studied by Jim Cannon, Bill Floyd, and Walter Parry in the context of Thurston’s
Geometrization Conjecture and Kleinian groups.

Their Twisted Pentagonal example goes like this:
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Subdivision Tilings

Studied by Jim Cannon, Bill Floyd, and Walter Parry in the context of Thurston’s
Geometrization Conjecture and Kleinian groups.

Their Twisted Pentagonal example goes like this:

Subdivide

A
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Circle Packed at Stage 7
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Unexpected Self-Similarity



Unexpected Self-Similarity
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Brain Flattening
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Random Surfaces

Cf. Rick Kenyon and Andrei Okounkov

A “stepped surface”
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