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We investigate the conformal welding problem, which is a way of taking quotients of Riemann

surfaces by identifying points on their boundaries. The existence and uniqueness of this

operation is in general difficult to determine. Our focus is on weldings which exhibit branching

so that the resulting boundary interfaces are dendrites. We show that the welding relation

associated to certain Julia sets in complex dynamics satisfies a regularity condition analogous

to the classical quasisymmetry condition. We also show that the Brownian lamination, a

random welding relation related to the continuum random tree, has a unique solution.
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Chapter 1

INTRODUCTION

Let D1 and D2 be topological spaces, and let ∼ be an equivalence relation on the

disjoint union D1 tD2. It is an elementary fact of point set topology that there is a unique

(modulo homeomorphism) quotient space Q := D1 tD2/ ∼ together with a quotient map

π : D1 tD2 → Q with the following universal property.

If f1 : D1 → Y and f2 : D2 → Y are continuous maps into any other topological space Y ,

and if f1 and f2 are consistent with ∼ in the sense that x ∼ y =⇒ f1(x) = f2(y), then there

is a unique continuous map f̃ : Q→ Y such that f̃ ◦ π = f1 t f2.

Informally speaking, we can say that Q is the result of gluing D1 and D2 via ∼, and this

construction is fundamental in all of mathematics.

This thesis is concerned with an analogous problem in the category of Riemann surfaces,

the so called ‘conformal welding problem’ [31]. In this setting the existence of the ‘quotient’

is in general not guaranteed to exist, and even when it does, it is not necessarily unique.

A common special case is when the D1 = D and D2 = D∗ := C\D are the closed unit disk

and the exterior of the unit disk respectively. Suppose γ ⊂ Ĉ is a Jordan curve and let φ−, φ+

be conformal maps from D,D∗ onto the bounded and unbounded complementary components

of Ĉ\γ respectively. By Carathéodory’s theorem, φ− and φ+ extend continuously to their

common boundaries ∂D. The welding homeomorphism1 associated to γ is the homeomorphism

h := φ−1
+ ◦ φ− : ∂D→ ∂D. See Figure 1.1.

1Note that we have abused language here because h is only defined up to pre and post composition by
Möbius transformations of the circle (since pre-composing φ− or φ+ by a Möbius transformation of the

disk yields another conformal map onto a component of Ĉ\γ).
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Figure 1.1: The left hand side depicts a homeomorphism h : ∂D → ∂D∗. We have drawn

∂D∗ slightly larger than ∂D so that the homeomorphism is visible. On the right hand side, a

sketch of the curve γ, a solution to the welding problem, is shown. It has the property that

φ− = φ+ ◦ h on ∂D, where φ− and φ+ are Riemann maps onto the components of C\γ.

Conversely, let h : ∂D → ∂D be homeomorphism, which can be interpreted as an

equivalence relation on the boundaries of D1 and D2. In this setting, the conformal welding

problem is to find a Jordan curve γ ⊂ C for which h is a welding homeomorphism for γ. The

resulting curve is said to be the2 conformal welding of h. This can be related to the preceding

discussion by using the solution φ−, φ+ to construct conformal charts for the topological

quotient sphere D th D∗.

In this way we obtain a partial correspondence between homeomorphisms h : S1 → S1

and Jordan curves in the plane (modulo some equivalence relations). For example, the

homeomorphism h(x) = x on S1 corresponds to the curve γ = ∂D.

For general homeomorphisms, it is difficult to determine whether a welding exists, and

even when existence is known, it is not always clear that the solution is unique (up to Möbius

2Again, an abuse of language because the image of γ under any Möbius transformation of Ĉ has the same
welding homeomorphism h.
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transformations).

1.1 Examples of Conformal Welding

In the examples below, instead of welding together D and D∗ as above, we may also weld

together the upper and lower half planes H+,H−. The definitions are similar, and the

examples can be transported into the setting described above via Möbius maps. Here, the

welding homeomorphism is a map h : R → R and a solution is an infinite arc γ in C with

both endpoints at ∞.

Example 1.1.1. Let h : R → R be defined by h(x) = x3. Let γ = [0,∞) ∪ i[0,∞). Then

φ+(z) = z1/2 and φ−(z) = z3/2 map H+ and H− respectively onto the complementary compo-

nents of C\γ. Furthermore, we have φ−1
+ ◦ φ− = h on R, so h is a welding homeomorphism

for γ.

More generally, for α > 1, h(x) = x|x|α−1 is a welding homeomorphism for γ = [0,∞) ∪

e2πi(1+a)−1
[0,∞).

A small modification of the first example gives an example of a homeomorphism that has

no welding solution. This example is even piecewise real analytic.

Example 1.1.2 ([49, Example 1]). Let h : R → R be defined by h(x) = x for x < 0, and

h(x) = x3 for x ≥ 0. The welding problem for h does not have a solution. To see this,

suppose for contradiction that γ ⊂ C is a solution and let φ+ and φ− be the conformal maps

from the upper and lower half planes to the complementary components of C\γ such that

h = φ−1
+ ◦ φ−. We will use this to construct an analytic covering map π : H → C\{γ(0)},

which is a contradiction.

For integer k, define the conformal maps τk : R × (i3k, i3k+1) → C\[0,∞) by τk(z) =

e
2π z−3ki

3k+1−3k from the strip to the slit plane.

Next define πk(z) = ϕ+ ◦ τk(z) if z ∈ H+ and πk(z) = ϕ− ◦ τk(z) if τk(z) ∈ H−, see Figure

1.2.
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Figure 1.2: The conformal map πk maps the strip R × (i3k, i3k+1) onto C\{γ(0)}, via the

maps φ+ and φ−. The maps πk and πk+1 agree on the line Imz = 3k+1, so the collection of

maps (πk)k∈Z extends to a continuous map H+ → C\{γ(0)}. Indeed this map is an analytic

covering map, which is a contradiction.

Observe that the maps πk and πk+1 extend to the boundary of their domains, and, because

(φ−, φ+) is a solution the welding problem h, they are equal on the common boundary

Imz = 3k+1. Thus the maps πk glue together to form a continuous map π on the upper half

plane H = ∪(R× [i3k, i3k+1]). This map is a topological covering map π : H→ C\{γ(0)}. By

construction, the map is analytic except on a countable union of horizontal lines. By Morera’s

theorem, π is actually analytic on H, and so π is an analytic covering H→ C\{γ(0)}. This

contradicts the fact that the universal covering space of C\{γ(0)} is the plane and not the

half plane.

Another way to derive a contradiction is to consider the modulus (see Section 2.3) of

the family of loops surrounding γ(0) and contained in a small neighbourhood of γ(0). This

modulus should be infinite, but one can show that if γ solves the welding problem h, then

the modulus is actually finite, which is a contradiction. See [49, Example 1] for details.

If γ is a solution to the welding problem h, the question of whether this is the unique

solution is closely related (but not necessarily equivalent, see [59, Question 1.2]) to the

conformal removability of the set γ. We say that K ⊂ Ĉ is conformally removable for

homeomorphisms if the following implication holds: if ϕ : Ĉ→ Ĉ is a homeomorphism which
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is conformal on Ĉ\K, then ϕ is conformal.

Proposition 1.1.3. If γ is a solution to the welding problem h, and it is conformally

removable for homeomorphisms, then in fact γ is the unique (up to Möbius) solution the

welding problem.

Proof. Let ϕ− and ϕ+ be the conformal maps into complementary components of Ĉ\γ such

that h = ϕ−1
+ ◦ϕ−. Suppose γ̃ ⊂ Ĉ is another solution, and let ϕ̃− and ϕ̃+ be the corresponding

conformal maps.

Define τ : Ĉ→ Ĉ by

τ(z) =

ϕ̃− ◦ ϕ
−1
− (z) if z ∈ ϕ−(D)

ϕ̃+ ◦ ϕ−1
+ (z) if z ∈ ϕ+(D∗).

(1.1)

Then τ is well defined and continuous, and it is a homeomorphism, so by the definition of

conformal removability, we have that τ is a Möbius transformation.

Examples of welding homeomorphisms that do not have unique solutions can be found in

[12].

We have seen that conformal welding gives a partial correspondence between homeomor-

phisms (up to Möbius equivalence) and Jordan curves in Ĉ (up to Möbius equivalence). It is

natural to ask for classes of homeomorphisms for which this correspondence is a bijection.

The following classical result says that the welding problem for quasisymmetric homeomor-

phisms always has a unique solution. It also characterizes the geometry of the solution γ. A

homeomorphism h : ∂D → ∂D∗ is said to be K-quasisymmetric if diamh(I) ≤ Kdiamh(J)

whenever I, J ⊂ ∂D are adjacent arcs of the same length. A Jordan curve γ is said to be a

K-quasicircle if for all x, y ∈ γ, we have diamC(γx,y) ≤ K|x − y|. Here γx,y is the smallest

component of γ\{x, y}.

All bi-Lipschitz homeomorphisms are quasisymmetric, and similarly all bi-Lipschitz loops

are quasicircles. An example of a quasicircle is the Koch snowflake.
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Theorem 1.1.4 (Fundamental Theorem of Conformal Welding [50]). If h is quasisymmetric,

then it has a unique (up to Möbius transformation) welding γ ⊂ C. Moreover, a Jordan curve

γ is a quasicircle if and only if its welding homeomorphism is quasisymmetric.

In many modern applications, the quasisymmetry condition for conformal welding is not

sufficient. In the calculus of random geometry developed by Duplantier, Miller and Sheffield,

[22], the welding of ‘random surfaces’ (which are, roughly speaking, Riemann surfaces

equipped with a certain random volume and boundary measures) along their boundaries is a

fundamental operation. Here the welding homeomorphism h : ∂S1 → ∂S2 is chosen so that

the boundary measures ν1, ν2 of the surfaces are consistent, h∗ν1 = ν2.

Roughly speaking, the quasisymmetry condition is a regularity condition on each scale,

however, for random homeomorphisms, it is almost always the case that the regularity

condition will be violated at infinitely many scales. Recent work [7] in this direction has

shown that ‘regularity at most scales’ suffices to show that the welding has a solution.

So far we have considered the problem of welding two disks (or half planes) along their

boundaries via a homeomorphism to yield a sphere (or plane) with a distinguished simple

curve. It is natural to generalize this and consider the welding problem for an arbitrary

equivalence relation on the boundary of (the union of) Riemann surfaces.

For instance, if h is a homeomorphism from the upper semicircle ∂D ∩H+ to the lower

semicircle ∂D∩H−, this induces a welding problem where the solution is a simple arc γ which

has the property φ = φ ◦ h on ∂D, where φ : D∗ → C\γ is a conformal map.

In this thesis we will be interested in the case when D∗ is welded via an equivalence

relation ∼ on ∂D∗. A solution in this case is a compact connected set K ⊂ C for which

the conformal map ι : D∗ → C\K extends continuously to the boundary and ι(x) = ι(y) iff

x ∼ y, see Figures 1.3, 1.7b and 1.8b. We will remove the Möbius freedom by requiring the

normalization ι(z) = z + o(1) as z →∞.

The topology of the solution set K can be much more complicated than in the classical

case of a Jordan curve, and indeed the possibility of ‘branch points’ presents additional
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Figure 1.3: The left hand side depicts a equivalence relation ∼ on ∂D∗. Points on ∂D∗ are

identified under ∼ if there is a curve in D connecting them. There are only finitely many

(three) non-trivial equivalence classes. The conformal map ι on D∗ extends to the boundary

and makes the identifications given specified by ∼.

difficulties.

Example 1.1.5. If ∼ is an equivalence relation on ∂D∗ such that each equivalence class is

finite, and there are only finitely many nontrivial equivalence classes (Figure 1.3), then it

not too hard to show that a welding exists, by using the classical Riemann uniformization

theorem.

Note that in this case, the solution is highly non-unique (even with the normalization

ι(z) = z + o(1)). Given a solution we can construct another solution by the following

procedure. Let D ⊂ K be an open disk, and let ϕ be any non-identity conformal mapping on

C\K such that ϕ(z) = z + o(1). Then ϕ ◦ ι is another solution to the welding problem.

Example 1.1.6. Suppose K ⊂ C is a continuum, i.e. a locally connected, connected compact

set with more than 2 points. Let ι : D∗ → C\K be the unique conformal map with

ι(z) = λz + o(1) as z → ∞, for some λ > 0. Suppose also that K has empty interior so
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that if ι : D∗ → C\K is a conformal map fixing ∞, then ι(∂D∗) = K. The lamination

associated to K is the equivalence relation on ∂D∗ defined by x ∼ y ⇐⇒ ι(x) = ι(y). If K

is conformally removable, then by the same argument as Proposition 1.1.3, z 7→ ι(z/λ) is the

unique (normalized) conformal map which solves the welding problem ∼.

Example 1.1.7. Let pc(z) = z2 + c be a quadratic polynomial. Its Julia set is the set of

points in C which are bounded under iteration by pc:

J = {z ∈ C : p◦nc (z) is bounded in n}.

We say that pc is strictly preperiodic if the orbit of the critical value c is pre-periodic but not

periodic. It can be shown that the Julia set of such polynomials are dendrites. Thus this

family of Julia sets provides many examples of weldable laminations, see Figure 1.7. In fact,

the lamination can be computed easily without computing the conformal map. In Chapter 3

of this thesis, we investigate the regularity properties of this lamination.

Example 1.1.8 (True trees and Shabat polynomials). Let T be a finite combinatorial

plane tree with n edges. There is a natural way to represent T as a lamination (up to

rotation), by dividing ∂D∗ into 2n arcs of the same length and identifying pairs of arcs by

an orientation reversing, arc length preserving homeomorphism, see Figure 1.5. We can use

the uniformization theorem to prove that the welding exists, see Figure 1.6. Let P2n ⊂ C

be a regular polygon with 2n sides, viewed as a Riemann surface. This gives a model of the

exterior unit disk D∗, and there is a unique (up to rotation) conformal map f : D∗ → P2n

which maps ∞ to the center of P2n and maps each of the 2n subarcs of ∂D∗ onto the edges of

P2n.

Using this correspondence between edges of P2n and subarcs of ∂D∗, the lamination ∼

induces a pairing ≈ of the 2n edges of P2n. The resulting quotient space is a Riemann surface

homeomorphic to a sphere (the Riemann surface structure has only been defined the interior

of the polygon, but it can be extended to the whole sphere by using flat charts on the edges

of the polygon. See [28, Section 2.2] for more details). By the uniformization theorem there

exists a conformal homeomorphism Φ : P2n/ ≈→ Ĉ.
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The composition ι := Φ ◦ f is the desired solution to the welding problem. Indeed, ι is

unique up to Möbius transformations because ι(∂D∗) is a finite union of analytic arcs, which

can be shown to be removable via Morera’s theorem. Another proof for the existence of the

solution to the welding problem, based on quasiconformal mappings, can be found in [14,

Corollary 2.6].

If we normalize so that ι(z) = z+ o(1), this procedure gives a unique conformal embedding

of the combinatorial tree T .

Figure 1.4 shows the conformal embedding of a 3-regular tree of depth 12. Figure 1.8b

shows a uniform random arc pairing lamination of n = 50000 edges, and an approximation

of the solution to the corresponding welding problem. In Chapter 4, we prove that the

solutions to the welding problem for a uniformly random arc pairing lamination with 2n edges

converges (as n→∞) to a limiting object (Theorems 1.3.1 and 1.3.2), which we interpret as

the conformal realization of the continuum random tree.

Figure 1.4: The conformal realization of the binary tree with 6141 edges. Generated with

Donald Marshall’s zipper software [45].
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Figure 1.5: Bottom left: A combinatorial plane tree T with 7 edges. Bottom right: The

representation of T as a Bernoulli excursion e : [0, 1] → R+. Top left: The representation

of T as a lamination ∼ on ∂D∗. The unit circle is divided into 14 equally size arcs and

pairs of arcs are identified with each other via orientation reversing and arclength preserving

homeomorphism. Top right: A sketch of the solution K to the welding problem induced

by ∼. The conformal map ι : D∗ → C\K makes the identifications given by ∼, that is

x ∼ y ⇐⇒ ι(x) = ι(y).
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Figure 1.6: An arc pairing lamination ∼ of 14 arcs is depicted on the left. Such laminations

can always be welded. Let P2n be a regular polygon with 2n sides (here n = 7), viewed as a

Riemann surface. Quotienting out by the relation ≈ induced by ∼ yields a Riemann surface

P2n/ ≈ homeomorphic to a sphere, and the uniformization theorem gives a uniformizing map

Φ : P2n/ ≈→ Ĉ. There is a conformal map f : D∗ → P2n/ ≈ which maps each of the 14 arcs

to one of the 14 edges of P2n. The composition ι = Φ ◦ f is the desired solution to the welding

problem.
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(a) The lamination ∼α associated to α =

1/4. The normalized Riemann map from the

outside of the disk to the outside of the Julia

set on the right identifies the endpoints of

chords in this picture.

(b) The Julia set associated to the polynomial

pc(z) = z2 + c where c ≈ −.228 + 1.115i is

a solution to the algebraic equation p2
c(c) =

p3
c(c).

Figure 1.7
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1.2 Dendrite Julia Sets

We saw in Example 1.1.7 that Julia sets of certain quadratic polynomials pc provide examples

of weldable equivalence relations ∼c with branching. The relations ∼c are intricate and diverse

for varying values of c, but there is a simple ‘combinatorial’ way of describing them without

reference to any complex analysis, see [8, 37, 57] and Chapter 3. For every combinatorial

parameter α ∈ T/{0} there is an abstract Julia equivalence ≈α, and there is a way to relate c

and α in such a way that, for many cases, ∼c=≈α.

There are several natural questions to ask about the welding relation ≈α.

Question 1.

• What is the relation between the geometric properties of the set Jc and the properties

of the welding relation ≈α?

• Can it be seen directly that ≈α has a welding solution? Of course we already know

that ∼c has a welding solution, but we are asking if it is possible to see this directly

from the combinatorial construction of ≈α.

One of the main theorems in [44] is a tree-welding analog of the ‘Fundamental Theorem

of Conformal Welding (for curves)’ (Theorem 1.1.4). It is proved that a welding relation has

a Gehring tree solution if and only if the welding has ‘quasisymmetric gluings at all scales

and all locations’. A Gehring tree is a dendrite K ⊂ C such that the complement C\K is a

John domain; this means that every point in the domain can be joined to any other point in

the domain without going too close to the boundary. A quasisymmetric gluing is, roughly

speaking, a chain of pairs of intervals around x for which a thick (uniformly perfect) subset

of each interval is identified quasisymmetrically with a thick subset of the other interval in

its pair. See Theorem 2.5.3 for details.

In [17] it is shown that Fatou sets for semihyperbolic polynomials are John domains. The

semihyperbolicity condition can be defined as a dynamical condition on the orbit of the

critical points under iteration of the polynomial.
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Theorem 1.2.1 ([17]). The polynomial p is semihyperbolic if and only if the complement of

the filled Julia set is a John domain.

In Chapter 3, we formulate the semihyperbolicity condition purely in terms of the

combinatorial parameter α ∈ T (and call it combinatorial semihyperbolicity), and we prove

that the relations ≈α corresponding to combinatorially semihyperbolic parameters satisfy the

quasisymmetric gluing condition described above.

Theorem 1.2.2. [43, Theorem 1.2] Suppose α is combinatorially semihyperbolic. Then ≈α
satisfies the hypotheses of Theorem 2.5.3.

This result illustrates how the quasisymmetric gluing criterion of [44] can be useful for

solving the welding problem. It inspired our further work on random welding problems,

described in Section 1.3.

We also show that our notion of combinatorial semihyperbolicity matches the notion of

semihyperbolicity [17] in the concrete setting.

Theorem 1.2.3. [43, Theorem 5.1] α ∈ T is combinatorially semihyperbolic if and only if

the associated c ∈ C is semihyperbolic and Jc is a dendrite Julia set.

Our proof is purely combinatorial, so together with the results of [44], which say that

quasisymmetric weldings have unique solutions and the solutions are Gehring trees - which

are a generalization of quasicircles to the dendritic setting - we get an independent proof of

Theorem 3.1.4 in the case of dendritic quadratic polynomials.

Corollary 1.2.4. If α is combinatorially semihyperbolic, the welding problem for ≈α has a

unique solution and the complement of the solution is a Gehring tree.

Theorem 1.2.2 describes the connection between John domains and semihyperbolic dy-

namics, and we proved the correspondence ‘semihyperbolic equivalence’ ↔ ‘quasisymmetric

lamination’.
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In future work, we would like to extend the results of this thesis to cover the Collet-

Eckmann (CE) [52, 55, 29] quadratic polynomials, which can have non-quasisymmetric

geometry.

1.3 Conformal embedding of random trees

The Brownian lamination is a random equivalence relation on T obtained from the Brownian

excursion as follows. Let e : [0, 1]→ [0,∞) be any continuous function with e(0) = e(1) = 0,

i.e. an excursion. This induces a pseudometric de(·, ·) on [0, 1] by

de(x, y) = e(x) + e(y)− 2 min
t∈[x,y]

e(t), x, y ∈ [0, 1]. (1.2)

Define x ∼e y if and only if de(x, y) = 0. In particular 0 ∼e 1, so we can view ∼e as an

equivalence relation on the unit circle T := R/Z. If e is taken to be the standard Brownian

excursion, then the resulting random equivalence relation ∼e is called the Brownian lamination.

The quotient of T under the Brownian lamination is known as the continuum random tree

(CRT) [3].

It is easy to show that the CRT does not satisfy the quasisymmetry hypothesis of Theorem

2.5.3. However, we prove that the Brownian lamination can still be welded.

Theorem 1.3.1. Almost surely, the Brownian lamination admits conformal welding. The

solution is unique up to Möbius transformation, and it is almost surely Hölder continuous

with a deterministic universal exponent α0 > 0.

Rather than proving this theorem directly, we prove a stronger result regarding convergence

of the Shabat trees introduced in Example 1.1.8. Shabat trees are the special case of

Grothendieck’s dessin d’enfant where the graph is a tree drawn on the sphere so that the Belyi

function is a polynomial, known as a Shabat polynomial or generalized Chebychev polynomial.

They arise in a number of different ways, and in particular can be shown ([11, 14]) to be

the dendrites whose laminations are given by non-crossing pairings of 2n arcs of equal size

on the circle (see Example 1.1.8). Equivalently, these laminations are given by the Dyck
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(a) A sample of ∼en for n = 30000. This is

generated by dividing the unit circle into 2n

arcs of equal size and choosing a uniformly

random non-crossing pairing of the arcs. As

n → ∞, this equivalence relation converges

to the Brownian lamination.

(b) The solution to the welding problem ∼en .

The Riemann map from the outside of the

disk to the outside of this set identifies the

endpoints of chords in the left picture. We

prove that as n → ∞, this converges to the

welding solution to the Brownian lamination.

Generated by Donald Marshall’s zipper soft-

ware [45].

Figure 1.8
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paths S coding the trees via (1.2), see Figure 1.5. Thus a Shabat tree with n edges chosen

uniformly at random can be viewed as the welding solution to the lamination associated with

simple random walk excursions of length 2n via (1.2). Roughly speaking, we prove that the

(suitably normalized) uniform random Shabat tree of n edges converges (distributionally in

the Hausdorff topology, and even stronger the topology induced by conformal parametrization)

to the random dendrite of Theorem 1.3.1. More precisely, it is not hard to show that the

laminations induced by simple random walk excursions converge to the Brownian lamination

in distribution (similar to the convergence of rescaled simple random walk to Brownian

motion), and we show that the solutions to the welding problems also converge.

Theorem 1.3.2. There exists a deterministic universal constant α0 > 0 such that the

following holds. If ιn : D→ C is the welding map for the uniform random lamination (the

random non-crossing pairing of 2n arcs), then ιn converges in distribution to a (random)

conformal map ι, with respect to uniform convergence on D. Furthermore, ι is almost surely

α0-Hölder continuous. The law of the associated lamination L̃ι is that of the Brownian

lamination.

1.4 Related Work

1.4.1 Conformal Welding of Jordan curves and trees

When two disks are welded together via a homeomorphism, existence and uniqueness of the

conformal welding is guaranteed if h is quasisymmetric [41, 50], and this is sometimes referred

to as the ‘fundamental theorem of conformal welding’ [31]. However, a full characterization

of welding homeomorphisms seems difficult - for instance, see the results and references in

[13]. In [7], it was shown that certain random homeomorphisms can be almost surely welded,

yielding a probability measure on the space of loops modulo Möbius transformations. Note

that the random homeomorphisms considered there are almost surely not quasisymmetric, so

that the fundamental theorem of conformal welding cannot be used to deduce existence and

uniqueness of the solution.
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In this thesis, we investigate the welding of the boundary of a single disk, where the

welding data is specified by a lamination (equivalence relation) on S1, and the resulting

surface is homeomorphic to the sphere. The theses [42] and [30] give sufficient conditions for

the existence of a solution - namely that solutions exist when only a small (zero capacity) set

of points have nontrivial equivalence class.

The thesis [9] also investigates the Brownian lamination. It is proved that any subsequential

limit ι of the finite solutions ιn must be nontrivial. That is, P(ι = Id) = 0. Bishop [14]

proves the deterministic result that any compact set in the plane can be approximated by

the compact set ι(∂D), where ι is the welding for some arc pairing lamination ∼en .

1.4.2 Conformal representation of (large) triangulations

Let T be a finite triangulation of the sphere S2. We may construct a Riemann surface from

the data of T by gluing equilateral triangles along edges according the combinatorics of T .

One way to make this precise is to interpret this as the conformal welding problem where

S =
⊔n
i=1 ∆i, and ∼ identifies edges of different ∆i. In this case the uniformization theorem

implies that the welding exists. That is, we can define the Riemann surface structure on

S/ ∼ by writing down charts at each point explicitly, and it is not hard to see that the

structure is unique. See [28] for details. The uniformization theorem implies the existence of a

homeomorphism ι : S/ ∼→ Ĉ which is conformal on the union of the triangles S. This gives

a canonical way of drawing triangulations of the sphere (up to an Möbius transformation of

Ĉ). Also, the pushforward of the natural Euclidean metric and Lebesgue measure on S via ι

induces a corresponding metric and measure on Ĉ.

This procedure provides a way to map a (combinatorial) triangulation of S2 to a met-

ric/measure space structure on Ĉ (modulo Möbius transformations). This procedure also

provides a canonical rational map f : Ĉ → Ĉ with critical values in {0, 1∞}, where the

preimage f−1(R) is exactly the triangulation T . Such rational maps are called Bélyi functions.

This correspondence between triangulations and Bélyi functions is of interest in algebraic

geometry and number theory [53, 39]. In recent years, the properties of the corresponding
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metric/measure/Riemann surface structure for large random triangulations have been studied

[18, 10, 28]. One motivation for this interest is the conjecture [54, 19] that measures and

metrics associated to large random triangulations will converge to certain continuum models

as the size of the triangulations goes to ∞. See [26] for an exposition of this area.

From the construction in Example 1.1.8, we see that welding problem for uniform random

laminations ∼en can be viewed as a certain random triangulation (the polygon P2n used

there can be replaced with the gluing of 2n equilateral triangles identified around a common

vertex).

1.4.3 Continuum random tree and mating

The random metric space (S1/ ∼, de), introduced by [3, 4, 5] is known as the continuum

random tree (CRT). Our definition corresponds to Corollary 22 in [5]. Being the scaling limit

of many models of random finite trees, it is important and well studied in probability theory,

see the survey [40]. In [22], it is shown that two independent CRTs can be glued together to

form a topological sphere equipped with a canonical measure and space filling curve, and

that this quotient space can be canonically embedded in S2 in such a way that the measure

is Liouville Quantum Gravity and the curve is space filling SLE. It would be interesting to

see whether we can use our conformal embedding of the CRT (Theorem 1.3.1) to provide

another construction of this embedding via an analogy of the mating construction [15] of

complex dynamics.
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Chapter 2

PRELIMINARIES

In this chapter we collect definitions and facts about quasisymmetric maps, logarithmic

capacity, conformal modulus and uniformly perfect sets, as can be found for instance in the

monographs [1], [2], [6], [27], [32], [51].

2.1 Notation

Throughout this thesis we will use the following notation: Ĉ = C ∪ {∞} is the extended

complex plane, D is the (open) unit disc, D∗ = Ĉ \ D, and T = ∂D is the unit circle.

We write a .λ b to designate the existence of a function C(λ) such that a/b ≤ C(λ), and

a . b if a ≤ Cb for some constant C > 0. We write a �λ b to mean that a .λ b and b .λ a.

2.2 John domains, quasisymmetric maps and Gehring trees

A connected open subset D of the Riemann sphere is a John-domain if there is a point z0 ∈ D

(the John-center) and a constant C (the John-constant) such that for every z ∈ D there is a

curve γ ⊂ D from z0 to z such that

dist(γ(t), z) ≤ Cdist(γ(t), ∂D)

for all t. If ∞ ∈ D, then z0 =∞. An equivalent definition ([51]) is that

diamD(σ) ≤ C ′diamσ (2.1)

for every crosscut σ of D, where D(σ) denotes the component of D \ σ that does not contain

z0. Moreover, it is enough to consider crosscuts that are line segments.

John domains were introduced in [34] and are ubiquitous in analysis. Simply connected

planar John domains can be viewed as one-sided quasidiscs. Indeed, a Jordan curve is a
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quasicircle if and only if both complementary components are John domains. Important work

related to John domains can be found in [6],[35],[17],[48],[58] and a large number of references

in these works. A (planar) dendrite is a compact, connected, locally connected subset T of

the plane C with trivial fundamental group.

Definition 2.2.1. A Gehring tree is a planar dendrite such that the complement is a

John-domain.

The notion of quasisymmetry is a generalization of quasiconformality to the setting of

metric spaces, see [32]. An embedding f : X → Y of metric spaces (X, dX) and (Y, dY ) is

quasisymmetric if there is a homeomorphism η : [0,∞)→ [0,∞) such that dY (φ(x), φ(z)) ≤

η(t)dY (φ(y), φ(z)) whenever dX(x, z) ≤ tdX(y, z). In this thesis we will be mostly be concerned

with the case when f is a homeomorphism and X, Y are subsets of the interval or the circle.

Here, a homeomorphism f : X → Y is quasisymmetric iff there exists K > 1 such that

|φ(x)− φ(y)| ≤ K|φ(y)− φ(z)| whenever |x− y| ≤ |y − z|.

2.3 Logarithmic capacity, conformal modulus and uniformly perfect sets

Let µ be a Borel measure of finite nonzero mass on C. The (logarithmic) energy E(µ) of the

measure µ is the extended real number

E(µ) =

∫∫
C2

− log |x− y| dµ(x)dµ(y). (2.2)

The (logarithmic) capacity of a compact set E ⊂ C is the real number

cap(E) = e− infµ E(µ),

where the infimum is taken over all Borel probability measures supported on E. Important

examples are capB(x, r) = r and cap[a, b] = |b− a|/4. The capacity of a Borel set is defined

as the supremum of the capacities of compact subsets.

Now let Ω ⊂ C be an open set. A path in Ω is a countable collection of rectifiable curves

in Ω. A path family in Ω is a collection of paths in Ω.
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A (conformal) metric on Ω is a measurable nonnegative extended real valued function

ρ : Ω→ [0,∞]. The area of a metric is the quantity Area(ρ) =
∫∫

Ω
ρ(x, y)2dxdy.

If γ is a path in Ω then the ρ-length of γ is `ρ(γ) =
∫
γ
ρ ds.

The modulus Mod(Γ) of a path family Γ is the quantity

Mod(Γ) = inf
ρ

Area(ρ) (2.3)

where the infinimum is taken over all admissible metrics ρ, namely Borel measurable functions

ρ such that infγ∈Γ `ρ(γ) ≥ 1.

Example 2.3.1. Let R = [0, 1] × [0,M ] be the rectangle with aspect ratio M > 0. Let Γ

be the family of paths joining the top edge of R to the bottom edge of R. Then by setting

ρ ≡ 1/M in the definition (2.3), we see that Mod(Γ) ≤ 1/M . In fact, we can show that

Mod(Γ) ≥ 1/M too. Let ρ : R→ [0,∞] be an admissible conformal metric, then for all x > 0

we have ∫ M

0

ρ(x+ iy)dy ≥ 1,

and the Cauchy-Schwarz inequality implies

M

∫ M

0

ρ(x+ iy)2dy ≥ 1.

Integrating this over x ∈ [0, 1] gives

M

∫
R

ρ(x+ iy)2dxdy ≥ 1,

i.e. Area(ρ) ≥ 1/M . Since ρ was arbitrary, this proves that Mod(Γ) ≥ 1/M as desired.

Similarly, if Γ∗ denotes the family of paths from the left edge of R to the right edge of R, one

can show that Mod(Γ∗) = M .

If f : Ω→ Ω′ is a conformal map, and ρ : Ω′ → R is a metric on Ω′, define the pullback

metric f ∗ρ : Ω → R to be the metric f ∗ρ(z) = ρ(f(z))|f ′(z)|. Then Area(f ∗ρ) = Area(ρ),

and `f∗ρ(γ) = `ρ(f ◦ γ) for any path γ in Ω.
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Let A ⊂ C be a topological annulus, that is, A is connected, open and has exactly two

complementary components. The modulus of A is defined to by Mod(A) = Mod(Γ) where Γ

is the family of simple loops in A that separate the components of C\A. By the discussion

above, Mod(A) = Mod(f(A)) if f is conformal on A. If A = {z : r < |z| < R} is a round

annulus for some 0 < r < R <∞, then Mod(A) = 1
2π

log(R/r) (the proof is similar to that

of Theorem 2.3.1).

The following lemma relates diameter and modulus. Together with Lemma 2.3.3, this

gives a useful method for getting upper bounds on the diameters of sets.

Lemma 2.3.2. Suppose E ⊂ C is compact, D ⊂ C is open, and E ⊂ D so that D\E is a

non-degenerate annulus. Then

diamE < 2 · 2−Mod(D\E)diam(D). (2.4)

Proof. We get can get a sharper result by using the asymptotics for the solution to Te-

ichmüller’s extremal problem [1, Chapter 3], but we will present a simpler argument that

uses essentially just the definition of modulus. This proof is adapted from [46]. Consider the

constant metric ρ ≡ 1 on D\E and fix ε > 0. By the definition of modulus, there exists a

simple loop γ ⊂ D\E separating E from C\D such that

`ρ(γ)2

Area(ρ)
≤ Mod(D\E)−1 + ε. (2.5)

By the isodiametric inequality [24, Theorem 2.4], we have Area(ρ) =
∫∫

D\E dxdy ≤
∫∫

D
dxdy ≤

π
4
(diamD)2. We also have `ρ(γ) ≥ 2diamE, so from (2.5) and taking ε→ 0 we get

4(diamE)2 ≤ π

4
(diamD)2Mod(D\E)−1.

Thus

diamE ≤
√
π

4
diamD ·Mod(D\E)−1/2 <

1

2
diamD ·Mod(D\E)−1/2. (2.6)

This proves the desired inequality when Mod(D\E) = 1.
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For the general case, divide the annulus D\E into dmod(D\E)−1e topologically concen-

tric topological annuli D\E1, E
◦
1\E2, E

◦
2\E3, . . . , (E

◦
dmod(D\E)−1e − 1)\E such that the first

bmod(D\E)−1c annuli have modulus equal to 1. This can be done by first mapping D\E

conformally onto a round annulus, dividing this round annulus into concentric round annuli

of the correct modulus, and then mapping back to D\E.

Iterating (2.6) yields diamE ≤ 2−bmod(D\E)−1cdiamD and this implies the desired inequality.

The following simple lemma allows us to bound the modulus of a large annulus by bounding

the modulus of a collection of smaller annuli contained inside.

Lemma 2.3.3. Let A be a topological annulus, and let A1, . . . , AN be a sequence of annuli

such that

• For each 1 ≤ i ≤ N − 1, the annulus Ai+1 is contained in the bounded component of

C\Ai

• Each Ai is essentially embedded in A: we have Ai ⊂ A, and if γ ⊂ Ai is a loop

separating the boundary components of Ai, then γ separates the boundary components

of A.

Then

Mod(A) ≥
N∑
i=1

Mod(Ai).

Proof. Let Γi be the loops in Ai that separate the boundary components of Ai, and let Γ

be the loops in A that separate the boundary components of A. Fix ε > 0 and let ρ be a

metric on A such that infγ∈Γ

∫
γ
ρds ≥ 1 and Area(ρ) ≤ Mod(Γ) + ε. Let ρi = ρ|Ai . Then

infγ∈Γi

∫
γ
ρids ≥ 1 because Γi ⊂ Γ, so Mod(Γi) ≤ Area(ρi) for all i. Thus∑

Mod(Ai) ≤
∑

Area(ρi) ≤ Area(ρ) ≤ Mod(Γ) + ε.

The middle inequality is due to the fact that all the Γi are disjoint. Taking ε→ 0 yields the

result.
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The previous two lemmas are frequently combined to show that a given compact set

K ⊂ C is small. We will be using this lemma with K = ι(I) where ι is the welding map and

I ⊂ T is an arc.

Lemma 2.3.4. Suppose K ⊂ C is contained in the disk of radius R, {z : |z| < R}. Suppose

there exists δ > 0 and a sequence of topological annuli A1, A2, . . . , AN such that

• Mod(Ai) > δ.

• The Ai are contained in the disk {z : |z| < R}.

• For i = 1, . . . , N − 1, the annulus Ai+1 is contained in the bounded component of C\Ai.

• K is contained in the bounded component of C\AN .

Then diamK ≤ 2 · 2−NδR.

Proof. Combine Lemmas 2.3.2 and 2.3.3.

We will also use Pfluger’s theorem which quantifies a close connection between capacity

and modulus, see [51, Theorem 9.17] for a proof:

Theorem 2.3.5. If B ⊂ ∂D is a Borel set and if ΓB is the set of all curves γ ⊂ D joining

the circle Cr to the set B, then

capB � e−π/M(ΓB)

with the implicit constants depending only on 0 < r < 1.

Specifically, we will use the following variant, which we leave as an exercise for the reader.

Theorem 2.3.6. If S = [0, 1]× [0,M ] is a rectangle, if B ⊂ [0, 1]× {M} is a Borel subset

of the top edge, and if ΓB is the family of curves that join the bottom edge [0, 1]× {0} to B

in S, then

capB ≤ C(M)e−π/2M(ΓB). (2.7)
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A compact set A is called uniformly perfect if there is a constant c > 0 such that no

annulus A(x, cr, r) with r < diamA separates A: If A ∩ A(x, cr, r) = ∅, then A ⊂ B(x, cr) or

A ∩B(x, r) = ∅. See [27, Exercise IX.3] for 13 other equivalent definitions.

2.4 Modulus of welded rectangles and annuli

In this section we develop one of the main analytic tools of this thesis. The main result of

this section provides an estimate for the modulus of conformally welded rectangles in terms

of the quality of the welding on a small subset of the welded boundary.

Let I+ = [0, 1] and I− = [0, 1]− i. Let S+ ⊂ C be the square with sides parallel to the

axes, with bottom edge I+. Let S− ⊂ C be the square with top edge I−. Now let h : I+ → I−

be a homeomorphism and suppose that h is a welding homeomorphism, meaning that there

exists a homeomorphism ι : (S+ t S−)/ ∼h→ Ω where Ω is a simply connected domain and

ι is conformal on S+ and S−. Without loss of generality (by composing with a Riemann

map) we can assume that Ω is a rectangle R = [0, 1]× [0,M ], and that the four vertices of

(S+ t S−)/ ∼ are mapped to the vertices of R in the following way: i 7→Mi, i+ 1 7→ 1 +Mi,

−2i 7→ 0 and 1− 2i 7→ 1. We are interested in bounds on the modulus M .

If h is the map h(x) = x− i then M = 2. On the other hand, if h is less well-behaved,

then it is possible for M to be arbitrarily large.

In our work it is crucial to find a criterion on h which ensures control over M . The

classical quasiconformal theory gives one such criterion. (We will not prove either of the

following propositions since we do not need them. They also follow from Proposition 2.4.4).

Proposition 2.4.1. If h : I+ → I− is K-quasisymmetric, then M is bounded by some

function of K.

In our setting of dendrites, the existence of branch points means we need control even

when I+ is not glued to I− via a homeomorphism, see Figure 2.1a. The following proposition

gives a criterion that works in this setting. It shows that as long as sufficiently ‘large’ parts of

I− and I+ are identified via a quasisymmetric homeomorphism, we can get control over M .
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Proposition 2.4.2. Let ∼ be an equivalence relation on I+ ∪ I−. Let E+ and E− be subsets

of I+ and I− respectively and let h : I+ → I− be a homeomorphism such that x ∼ h(x) for

x ∈ E+. If E+ is uniformly perfect and h is quasisymmetric, then M is bounded above by a

function of the quasisymmetry constant of h and the uniform perfectness constant of E+.

For this reason, we say that ∼ is L-quasisymmetrically thick between I− and I+ if the

hypothesis of the preceding proposition holds (here L is a parameter quantifying the uniform

perfectness constant and quasisymmetry constant).

However, this is still not strong enough for our purposes. As mentioned in the introduction,

the notions of uniform perfectness and quasisymmetry are not sufficient in random settings

since ‘almost surely something bad will happen at some scale somewhere’. We need the

following lemma, which allows us to deal with the random setting.

The proposition provides an estimate for the modulus of conformally welded rectangles in

terms of the quality of the welding on a small subset of the welded boundary.

Definition 2.4.3. Let ∼ be an equivalence relation on I− ∪ I+. A pair µ−, µ+ of probability

measures supported on I− and I+ respectively is called a gluing pair for ∼, I−, I+ if there is

a measure preserving bijection φ between measurable subsets E− ⊂ I− and E+ ⊂ I+ of full

measure, µ−(E−) = µ+(E+) = 1, such that φ(x) ∼ x for all x ∈ E−.

A topological rectangle is a Jordan domain where two disjoint arcs on the boundary have

been marked. In the following statement, S+ and S− are squares, but it is clear that we can

use Riemann maps to generalize to the case when S+ and S− are topological rectangles, in

which case the constant C0 of the conclusion depends on the geometry of S+ and S−. We

will use this generalization freely in Section 2.5 to get bounds on the welding of topological

rectangles.

Proposition 2.4.4. The family Γ of pairs of paths (γ+, γ−) joining the top edge of S+ to the

bottom edge of S− such that the endpoint of γ+ is equivalent to the initial point of γ− satisfies

Mod(Γ)−1 ≤ C0 inf
µ−,µ+

max
(
E(µ−), E(µ+)

)
, (2.8)
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where the infimum is taken over all gluing pairs of measures as above, and E denotes logarithmic

energy.

Note that the quantity Mod(Γ)−1 in the lemma above is an upper bound for the aspect

ratio M of the welded squares.

Proof. Let ρ = (ρ−, ρ+) be a conformal metric on the disjoint union S− t S+ and let µ−, µ+

be Borel probability measures supported on I− and I+ respectively, together with a measure

preserving bijection φ as in Definition 2.4.3. Let B+ ⊂ E+ be the set of bad points p such

that every curve γ+ ⊂ S+ from the top edge of S+ to p has ρ+-length at least 1/2, and define

B− ⊂ E− similarly so that all the curves from E− to the bottom edge of S− have ρ−-length

at least 1/2. By definition we have that Mod(ΓBi) ≤ 4Area(ρi) for i = −,+. By Pfluger’s

Theorem 2.3.6 we have

capBi ≤ C0e
−π/(2Mod(ΓBi )) ≤ C0e

−π/(8Area(ρi)) ≤ e−π/(8Area(ρi))+c0

where we assume without loss of generality that C0 ≥ 1 and c0 ≥ 0. Suppose that

Area(ρi) ≤ π/8

16 E(µi) + c0

for both i = −,+ (2.9)

so that capBi ≤ exp(−16 E(µi)). Then

µi(Bi) ≤ 1/4. (2.10)

Indeed, since − log |x − y| ≥ 0 for all x, y ∈ [0, 1], we have E(µi) ≥ E(µi|Bi), and since

µi|Bi/µi(Bi) is a probability measure, we have

− log capBi ≤ E(µi|Bi/µi(Bi)) =
E(µi|Bi)
µi(Bi)2

≤ E(µi)

µi(Bi)2
≤ − log capBi

16µi(Bi)2
.

Since φ is measure preserving we thus have µ+(B+ ∪ φ−1(B−)) ≤ 1/2 and in particular the

good set I+ \ (B+ ∪ φ−1(B−)) is non-empty. Let p be a point of this good set. Then there

are curves γ+ ⊂ S+ and γ− ⊂ S− joining the top edge of S+ to p and the bottom edge of

S− to φ(p) respectively, such that both the ρi−lengths of the γi are less than 1/2. Thus the
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metric ρ = (ρ−, ρ+) is not admissible for Γ. It follows that every admissible metric ρ must

violate (2.9) and so

Area(ρ) ≥ max
i

Area(ρi) >
π/8

16 E(µi) + c0

,

which proves the proposition.

Remark 2.4.5. Proposition 2.4.2 can be viewed as a direct consequence of Proposition 2.4.4,

since uniformly perfect sets, having positive capacity, support measures of bounded energy,

and quasisymmetric maps distort energy of measures in a controlled manner (since they are

Hölder continuous).

The following lemma explains how Proposition 2.4.4 will be applied to the Brownian

lamination, see Chapter 4 and in particular Proposition 4.2.4. Recall that an excursion is a

continuous map e : [0, 1]→ [0,∞) which is zero at the endpoints. Every excursion determines

a lamination via (1.2).

Lemma 2.4.6. Fix x ∈ (0, 1) and let I− = (0, x) ⊂ T and let I+ = (x, 1) ⊂ T. Let

e : [0, 1]→ R+ be a (C, α)-Hölder continuous excursion and let ∼e be the lamination on T

induced by e. There is a gluing pair µ−, µ+ for ∼e, I−, I+ such that

max
(
E(µ+), E(µ−)

)
≤ 1

α

(
3/2 + log e(x)−1 + logC

)
. (2.11)

Proof. Let m be the Lebesgue measure on [0, e(x)] normalized so that |m| = 1. Computing

the integral (2.2) shows that E(m) = E(m[0,1])− log e(x) = 3/2− log e(x) where m[0,1] is the

Lebesgue measure on [0, 1].

Define the one-sided inverse functions e−, e+ on [0, e(x)] by e−(y) = sup{t ≤ x : e(t) =

y} and e+(y) = inf{t ≥ x : e(t) = y}, see Figure 2.1b. Let E− ⊂ I− and E+ ⊂ I+

be the image of [0, e(x)] under e− and e+ respectively. Define the measures µ+, µ− on

[0, 1] by µ+(A) = m(e(A ∩ E+)) and µ−(A) = m(e(A ∩ E−)). Since e is (C, α)-Hölder

continuous, (2.2) shows that µ+ and µ− both have energy bounded above by 1
α
E(m)+ 1

α
logC =

1
α

(3/2 + log e(x)−1 + logC).
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(a) Two squares are welded along a common

horizontal boundary, via an equivalence re-

lation ∼, shown in purple. A measure pre-

serving bijection between subsets of I+ and

I− is highlighted in dark purple. ι maps

the vertices of the rectangle on the left to

the vertices of the rectangle on the right.

If domf ∪ imf is ‘large’ and f is ‘good’,

then we can bound the aspect ratio of the

resulting rectangle.

(b) If e : [0, 1]→ R+ is a Hölder continuous excur-

sion then we for any fixed x we can construct a

measure µ+ on [x, 1] by pushing forward Lebesgue

measure on [0, e(x)] via the inverse e+ of e that

maps y to the first time that e hits y after x. We

use a similar construction to get a measure µ−

on [0, x]. The energies of µ− and µ+ are bounded

by a function of C,α and e(x).

Figure 2.1: Illustrations for Proposition 2.4.4 and Proposition 2.4.6.

Define the bijection φ : E− → E+ by φ(t) = e+(e(t)). Notice that mint≤s≤φ(t) e(s) = e(t) =

e(φ(t)), so by definition of ∼e we have t ∼e φ(t). We also have µ−(A) = m(e(A ∩ E−)) =

m(e(e−(e(A ∩ E−)))) = m(eφ−1(A ∩ E−)) = µ+(φ−1(A)) for all Borel A ⊂ [0, 1]. Thus µ−

and µ+ is a gluing pair for ∼e, I−, I+.

Finally, we show that the result of Proposition 2.4.4 can be ‘chained together’ to get an

estimate for weldings of multiple rectangles.
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Proposition 2.4.7. For i = 1, 2, . . . ,m consider the square Si = [0, 1] × [2i − 2, 2i − 1].

Let ∼i be an equivalence relation identifying points on the edge [0, 1]× {2i− 1} to the edge

[0, 1]× {2i}. Let Γ be the family of paths (γ1, . . . , γm) on tSi such that

• Each γi joins the top edge of Si to the bottom edge of Si.

• For i = 1, . . . ,m− 1, the top endpoint of γi is identified via ∼i to the bottom endpoint

of γi+1.

Then

Mod(Γ)−1 ≤ m

(
C0 ·max

i
inf
µ−,µ+

(E(µ−), E(µ+)) ∧ 1

)
where the infimum is over all gluing pairs µ−, µ+ for ∼i.

Proof. Let ρ = (ρ1, . . . , ρm) be a metric on tiSi and suppose that

Area(ρ)−1 ≥ C0 max
i

inf
µ−,µ+

(E(µ−), E(µ+)) ∧ 1

where C0 is the constant of Proposition 2.4.4. We will construct a path in Γ that has ρ-length

bounded above by C0m, and this will prove the theorem.

For i = 1, . . . ,m− 1, applying Proposition 2.4.4 to the pair of squares Si, Si+1 and the

relation ∼i shows that there exists a pair of paths γi,i+1 ∈ Si and γ′i,i+1 ∈ Si+1 such that

• `ρ(γi,i+1) + `ρ(γ
′
i,i+1) ≤ 1

• γi,i+1 joins the bottom edge of Si to the top edge of Si

• γ′i,i+1 joins the bottom edge of Si+1 to the top edge of Si+1

• The top endpoint of γi,i+1 is identified to the bottom endpoint of γ′i,i+1.

See Figure 2.2.
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Figure 2.2: Bounding the modulus of multiple squares welded together, Proposition 2.4.7.

We use Proposition 2.4.4 to construct paths (blue) joining the boundaries of pairs of squares.

Then we use paths (red) joining the other sides of the squares, to find a single path through

all the squares.

On the other hand, the modulus of the path family joining the left side of Si to the right

side of Si is 1, see Example 2.3.1. Therefore for each i = 2, . . . ,m− 1 there exists a curve gi

joining the left side of Si to the right side of Si, with ρ-length bounded above by 1.

Then the union
⋃
i γi,i+1 ∪ γ′i,i+1 ∪

⋃
i gi contains a path in Γ with ρ-length bounded by

(m− 1) + (m− 2) = 2m− 3 (follow that γi,i+1 path, then the γ′i,i+1 path until you intersect

the gi+1 path, follow that until you hit the γi+1,i+2 path, and so on). This proves the desired

bound on Mod(Γ).

2.5 Chains of rectangles and conformal annuli

In this section we will set up some notation for describing the annuli that we will use to

control the modulus of continuity of conformal welding solutions. Then we write down sets of

conditions that allow control of the modulus of these annuli. Fix a lamination ∼ on T.

A chain link is pair of disjoint closed intervals J− = [a−, b−], J+ = [a+, b+] ⊂ T such that

some point of J− is equivalent to some point of J+. Often (but not necessarily) the endpoints

will be equivalent, a− ∼ b+ and a+ ∼ b−, which explains some of our terminology. For m ≥ 1,
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Figure 2.3: Top: The intervals of a 3-chain (green) represented in R. The first two intervals

(from the left) form a chain link, the third and fourth intervals form a chain link, and the

last two intervals form a chain link. The arcs above the real line represent chords in ∼. The

regions below the real line bounded by the squares and the real axis form AH(C). Bottom

left: The lower half plane in the upper figure is mapped to the exterior of the unit disk D∗.

Again, the arcs in the disk represent chords of ∼. The regions bounded by the curves in D∗

and the unit circle form AD∗(C). Bottom right: The image of D∗ under the solution to the

conformal welding ι. We see that image of AD∗(C) from the bottom left picture becomes a

single topological annulus around ι(eix) in C, which we call A(C). The modulus of the chain

is defined to be the modulus of this annulus.
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an m−chain C is a collection of m mutually disjoint chain links J−i , J
+
i such that the intervals

are in cyclic order on the circle, a−1 < b−1 < a+
1 < b+

1 < a−2 < ... < a+
m.

For m ≥ 2, the exterior of an m-chain is the union of the arcs that lie ‘in between’ each

chain link: Exterior(C) = ∪mi=1J
◦
i where J◦i is the component of T\{J−i ∪ J+

i } which does not

contain any other chain links in the chain. The interior of an m-chain is the union of arcs

T\(Exterior(C) ∪ C). These definitions do not make sense when m = 1, since T\(J−1 ∪ J+
1 )

consists of exactly two components, neither of which contains any chain links in C. For

this reason, we assume that 1-chains come with extra data specifying which components of

T\(J−1 ∪ J+
1 ) should be considered the interior and exterior respectively.

Let C be a m chain. For each 1 ≤ i ≤ m, we can associate a topological rectangle Di =

Di(C) in D∗ as follows. Let Ii be the component of Interior(C) lying in between J+
i and J−i+1.

Let Log : D∗\L→ C be a branch of the logarithm where the branch cut L = eiθ[0,∞) is taken

to be any ray from the origin that does not pass through the arcs J+
i ∪Ii∪J−i+1. Then the map

ϕ(z) = 1
2πi

Logz transforms D∗\L to the vertical half-strip Sθ := (θ, θ+1)× (−∞, 0) and maps

the arcs J+
i , Ii and J−i+1 onto intervals in R. Let Ai = Square(ϕ(J+

i ∪Ii∪J−i+1))\Square(ϕ(Ii))

where, for I an interval in R, Square(I) = I◦ × (0,−|I|) is the open square in the half-strip

Sθ with upper edge I◦.

Then Ai can be considered a topological rectangle by taking ϕ(J+
i ) and ϕ(J−i+1) as the

two marked arcs, and Di is defined to be the image of Ai under the inverse of ϕ, which is

z 7→ e2πiz.

The point of this construction is that if ι(D∗) = C, then A(C) := ι(∪iDi(C)) is a

topological annulus in C, which we can use with Lemma 2.3.4. Moreover, the bounded

component of C\A(C) contains ι(Interior(C)) and the unbounded component of C\A(C)

contains ι(Exterior(C)), which explains the terminology.

To use this construction with Lemma 2.3.4, we need to control the modulus of the welded

annulus A(C). The bound of Proposition 2.4.4 (more precisely, its proof) gives a way to do

this. We see that there are three conditions that need to be satisfied by the chain C so that

the modulus of A(C) is controlled.
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Condition 1: All topological rectangles (Di, J
−
i , J

+
i ) have bounded modulus. This is

easily seen to be equivalent to requiring an estimate of the form

|a−i+1 − b+
i | .L |J+

i | �L |J−i+1|. (2.12)

Condition 2a): The lamination is L−thick between J−i and J+
i , meaning that there

exists gluing pairs µ−i , µ
+
i for ∼, J−i , J+

i such that

max
(
E(µ̂−i ), E(µ̂+

i )
)
≤ L, (2.13)

where µ̂ denotes the probability measure on [0, 1] obtained from µ by linear scaling.

Note that the preceding condition is implied by the following stronger condition, by

Remark 2.4.5.

Condition 2b): The lamination is L−quasisymmetrically thick (see the discussion after

Proposition 2.4.2) between J−i and J+
i .

Condition 3: The number of links of the chain is bounded:

m ≤ L. (2.14)

We say that a chain satisfying conditions 1, 2a) and 3 is a L-good chain. A chain satisfying

1, 2b) and 3 is a L-qs-good chain. If J−i and J+
i satisfies condition 2b), we say that J−i and

J+
i are qs-glued. As explained in Remark 2.4.5, a qs-good chain is automatically a good chain.

Theorem 2.5.1. If C is a L-good chain,

Mod(A(C)) &L 1. (2.15)

Proof. The proof is essentially the same as the proof Proposition 2.4.7. Note that we only

need one direction of the inequality in (2.12).

The criterion above motivates the following definition.

Definition 2.5.2. Fix L > 1. A number 0 < r < 1 is a (qs-)good scale for a point x ∈ T, if

there is an L-(qs-)good chain C with x ∈ Interior(C), and L−1r ≤ |J+
1 | ≤ Lr.
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We conclude this section by stating an analogue of the ‘Fundamental Theorem of Conformal

Welding’, Theorem 1.1.4, for dendrites. A Gehring tree K ⊂ C is a connected, locally

connected, compact set with at least two points such that C\K is a John domain.

Theorem 2.5.3 ([44, Theorem 1.1]). Let ∼ be a lamination for which D∗/ ∼ is a topological

sphere. If there are C,N and ε > 0 such that for every x ∈ T, the set of good scales has lower

density ≥ ε,
|{k ≤ n : 2−k ∈ G(x,C,N)}|

n
≥ ε

for all n, then ∼ is the lamination of a Hölder-tree. If every scale r is good, then ∼ is the

lamination of a Gehring tree.

Proof Sketch. Suppose ∼ satisfies the hypotheses. For the sake of exposition, first suppose

that ∼ has a conformal welding solution ι : D∗ → C. Now fix x ∈ T. If all scales 0 < r < 1

are good for x, then for fixed ε > 0, there are �L log ε−1 L-good chains C which surround

B(x, ε). From Theorem 2.5.1, this implies that there are �L log ε−1 annuli of modulus greater

than δ = δ(L) surrounding ι(B(x, ε)). Then Lemma 2.3.4 implies that diamι(B(x, ε)) . εα(L)

where the exponent 0 < α(L) < 1 depends on L. It follows that the welding ι is Hölder

continuous, if it exists.

To actually show the existence of ι, the idea is to consider carefully chosen approximate

solutions ιn that partially solve the welding problem ∼. The argument above can be modified

to show that the approximations ιn are uniformly Hölder continuous, so we can pass to

subsequential limits. The existence of the welding follows from showing that the subsequential

limit solves the welding problem. The Gehring property of the solution can also be deduced

from the modulus estimates.

Combining Proposition 1.1.3 with P. Jones’ removability theorem [35] for John domains,

or its generalization the Jones-Smirnov removability theorem [36] for Hölder domains, shows

that the solution to the welding of Theorem 2.5.3 is unique up to a linear map (see Proposition

1.1.3).
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Chapter 3

JULIA SETS OF SEMIHYPERBOLIC QUADRATIC
POLYNOMIALS

3.1 Introduction

This chapter is concerned with welding relations arising in the study of the dynamics of

quadratic polynomials. First we review the basic definitions in this area, see [16] and [47] for

more detailed introductions. Let p be a complex quadratic polynomial. By conjugation via

linear maps, we may assume that p is of the form pc(z) = z2 + c, for some c ∈ C.

A periodic point is a point z ∈ C such that pn(z) = z for some n ≥ 1. A point z is said

to be pre-periodic if some iterate pt(z) is a periodic point. A strictly pre-periodic point is

a point which is pre-periodic but not periodic. A peroidic point z is said to be parabolic if

(pn)′(z) is a root of unity. The filled Julia set is the set of points that stays bounded under

iteration by p,

Kc = {z : pnc (z) bounded in n},

and the Julia set is the boundary of this set, Jc = ∂Kc. The Fatou set is the complement of

the Julia set. The basin of attraction to infinity is the complement of the filled Julia set. It

turns out that geometric properties of the filled Julia set are closely related to behaviour of

the critical point (z = 0) under iteration by pc.

A simple example is that 0 ∈ Kc if and only if Kc is connected, [16, Theorem 4.1].

The classification of Fatou components, initiated by Fatou and Julia in the 1900s and

completed by Sullivan in 1985 ([16, Theorem 2.1] and [56]) implies that if the critical point,

0, of pc(z) = z2 + c is strictly preperiodic, then Kc = Jc and in particular Jc is a dendrite.

Example 3.1.1. Let c = −2, then the critical point z = 0 is strictly preperiodic under
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iteration by pc : 0 7→ −2 7→ 2 7→ 2, and by the discussion above, J−2 must be a dendrite.

This particular example is simple enough that we can see this directly. The map p−2 : z 7→

z2 − 2 : C\[−2, 2]→ C\[−2, 2] is conjugate to p0 : z 7→ z2 : D∗ → D∗ via the Joukowsky map

ϕ : z 7→ z + 1
z

: D∗ → C\[−2, 2]. Indeed, direct calculation shows that ϕ ◦ p0 ◦ ϕ−1 = p−2 on

C. Since the basin of attraction to infinity for p0 is obviously D∗, it follows that J−2 = [−2, 2],

which is indeed a dendrite. Note that ϕ is the unique normalized welding solution to the

lamination x ∼ −x on T, since ϕ(ei2πx) = ϕ(e−i2πx).

When Kc is connected and locally connected, the conjugacy above always holds. Let

ϕc : D∗ → C\Jc be the conformal map, normalized so that ϕc(z) = λz + O(1) for λ > 0

(the proof below will show that this forces λ = 1). It will be convenient to introduce the

Caratheodory loop γ(x) = ϕc(e
2πix) and the doubling map h(x) = 2x for x ∈ T. Here, we

identify T with the quotient [0, 1]/ ∼, where ∼ identifies 0 and 1.

Proposition 3.1.2. For x ∈ T,

pc ◦ γ(x) = γ ◦ h(x). (3.1)

Proof. The map ϕ−1
c ◦pc◦ϕc : D∗ → D∗ is proper of degree 2 and fixes∞, so ϕ−1

c ◦pc◦ϕc(z) =

µz2 for some |µ| = 1. On the other hand, the normalization assumption ϕc(z) = λz +O(1)

(where λ > 0) implies that ϕ−1
c ◦ pc ◦ ϕc(z) = λz2 + O(z) for large z, so we conclude that

µ = 1 (and furthermore λ = 1). The result then follows from the definition of γ and h.

This observation allows us to describe the welding relation ∼ associated to Jc in a purely

combinatorial manner.

Example 3.1.3. Let c = i, then the critical point z = 0 is strictly preperiodic under iteration

by pc : 0 7→ i 7→ −1 + i 7→ −i 7→ −1 + i, and by the discussion above, J−i must be a dendrite.

The Julia set of this polynomial is far more complicated than that of the previous example,

see Figure 1.7. However, we can use the semiconjugacy of Proposition 3.1.2 to determine the

associated welding relation ∼ on T.
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Let α be an external angle of the critical value c = i, meaning γ(α) = i. Since p2
i (i) = p3

i (i),

the semiconjugacy (3.1) implies 22α = 23α (mod 1). It follows that α = k/6 for some integer

k. We know that α 6= 0, otherwise this would imply that i is a fixed point of pi. Similarly,

α 6= 2
6
, 4

6
because this would imply that i is periodic under iteration by pi. The only remaining

possibilities are α = 1/6 or α = 5/6. The latter may be eliminated by using Douady-Hubbard

correspondence between parameter rays for the Mandelbrot set and dynamical rays for the

Julia set, [21, Theorem 8.2].

This fact leads to a nice description the welding ∼. The semiconjugacy implies γ ◦h−1(t) ∈

p−1
c (γ(t)) for t ∈ T. Applying this with t = 1/6 yields γ(1/12) = γ(7/12) = 0, because 0 is

the only element of p−1
c (i). In particular, 1/12 ∼ 7/12.

By the same reasoning, we get that {γ(1/24), γ(13/24), γ(7/24), γ(19/24)} ∈ p−1
c (0) =

{(−i)1/2,−(−i)1/2}. From topological considerations, the welding relation ∼ must be flat [57,

Proposition II.3.3], meaning that if x ∼ y and z ∼ w and the chord [x, y] crosses [z, w], then

x ∼ y ∼ z ∼ w.

Using this, we can deduce that γ(1/24) = γ(7/24) and γ(19/24) = γ(13/24), and that

these two points are distinct.

Continuing inductively, we get an infinite set of pairs in ∼. It can be shown that taking

the topological closure of these pairs in T× T recovers ∼ itself, see [8, Theorem 1]

In the previous example we saw that the parameter α = 1/6 generates a lamination ∼ via

backwards iteration. In Sections 3.2.1 and 3.2.2 we generalize this. For each α ∈ T there is

an associated equivalence relation ≈α, defined without reference to complex analysis. When

the Julia set Jc of a quadratic polynomial pc is a locally connected dendrite, the lamination

describing its welding is equal to ≈α, where α ∈ T is the landing angle of the critical value c.

Another example where the dynamical behaviour of the critical point influences the geom-

etry of the Julia set is captured by the notion of semihyperbolicity, which was introduced for

polynomials in [17]. It was shown (among other things) that a polynomial p is semihyperbolic

if and only if either of the following equivalent conditions hold. In this chapter we will take
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the second condition as our definition of semihyperbolicity.

Theorem 3.1.4 ([17, Theorem 1.1]). The following conditions are equivalent.

• p is semihyperbolic.

• p has no parabolic periodic points and w /∈
⋃
t≥1 p

t(w) for all points w such that p′(w) = 0

(critical points).

• The basin of attraction to ∞ is a John domain.

Note that if pc is strictly preperiodic, then it is semihyperbolic.

In this chapter, we introduce a combinatorial condition on the parameter α called combi-

natorial semihyperbolicity, (see Definition 3.2.5). We show directly that if α is combinatorially

semihyperbolic , then the lamination ≈α associated to α satisfies the hypotheses of Theorem

2.5.3, see also Definition 2.5.2.

Theorem 3.1.5. Suppose α ∈ T is combinatorially semihyperbolic and consider the lamina-

tion ≈α associated to α. Then there exists L such that for all x ∈ T, for all 0 < r < 1, r is a

L−qs-good scale for x.

In fact, our construction will show that we can take the uniformly perfect sets (in the

definition of qs-good scales) to be linear Cantor sets, and we can take the quasisymmetric

maps to be linear maps.

We also prove that combinatorial semihyperbolicity is equivalent to semihyperbolicity.

Theorem 3.1.6. Suppose c ∈ C is a parameter for which Jc is a dendrite. Suppose c is

semihyperbolic. Let α ∈ T be a landing angle of the critical value c. Then α is combinatorially

semihyperbolic.

Conversely, if α is combinatorially semihyperbolic, there exists c ∈ C for which Jc is a

dendrite and c is semihyperbolic, and the external ray at angle α lands at c, and ≈α=∼c .
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The proof of this Theorem is at the end of this chapter, in Section 3.4. Everything

preceding that section is purely combinatorial.

As a corollary of Theorems 2.5.3, 3.1.5 and 3.1.6, we get a new proof of Theorem 3.1.4 in

the case where p is a quadratic polynomial with dendritic Julia set.

Notation In this chapter we make the identification T ∼= R/Z, and for a, b ∈ T we write

(a, b) to mean the counterclockwise open arc from a to b, and similarly for [a, b]. We define

the doubling map h : T→ T by h(x) = 2x mod 1. If I = (a, b) ⊂ T or I = [a, b] ⊂ T is an

open or closed interval, let |I| = b− a denote its length, normalized so that |T| = 1.

If a, b, c, d ∈ T are distinct, we say that {a, b} crosses {c, d} if the chord joining a to b

intersects (in D) the chord from c to d. This is equivalent to saying that if U1 and U2 are the

two components of T\{a, b}, then U1 and U2 each contain an element of {c, d}. We sometimes

refer to two element subsets {a, b} ⊂ T as chords. If a ∼ b for some relation ∼ (depending on

context), we may refer to {a, b} as a leaf.

An equivalence relation ∼ on T is flat if whenever {x, y} and {z, w} are crossing leaves,

then x ∼ y ∼ z ∼ w. A lamination is a flat equivalence relation on T.1

A∗ is the set of finite words on some alphabet set A, and A∞ is the set of infinite words.

If g ∈ A∗ is a finite word, we write |g| to denote the number of letters in g. If, in addition,

h ∈ A∗ ∪ A∞ is a finite or infinite word, gh denotes the concatenation. If k is in a positive

integer, gk denotes the k-fold concatenation and g∞ denotes the periodic infinite word ggg . . . .

For integer m ≥ 0, gm denotes the mth letter of g, and g|m denotes the subword of g of the

first m letters g0g1g2 . . . gm−1 ∈ Am.

If ∼ is an equivalence relation on T and x ∈ T, we write [x] or [x]∼ to denote the

equivalence class of x as a subset of T.

To reduce clutter, we will drop subscripts, superscripts, and parentheses for function

arguments when they are clear from context.

1In the literature, for instance [57], a lamination refers to a collection of noncrossing chords of the circle.
The two usages are clearly related, but in this chapter a lamination will always be an equivalence relation.
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3.2 Description of the lamination

We provide a mostly self contained review of the minimal and dynamical α-equivalences ∼α
and ≈α in Section 3.2.1 and 3.2.2. See [57] and [8] for more detailed presentations. These

equivalences are equal in our setting (see Theorem 3.2.4), and they provide a family of

conformal welding problems. In Section 3.2.3 we introduce the notion of M -closeness which

provides a simple characterization of the topology of quotient space T/ ≈α.

Our construction will use some more detailed results on the relationship between ∼α and

≈α, and this is the content of Section 3.2.4.

3.2.1 Invariant Laminations and the Minimal α-Equivalence ∼α

Fix α ∈ T\{0}, and assume that α is not periodic under iteration by h (we will soon see that

this follows from the combinatorial semihyperbolicity condition defined in Section 3.1). The

preimages of α under the angle doubling map h are ∗1 := α/2 and ∗2 := α/2 + 1/2. These

two points divide the circle T into two semi-circular arcs, (∗1, ∗2) and (∗2, ∗1). See Figure

3.1a. Let L be the semicircle containing α and let R be the other semicircle.

Each x ∈ T has two preimages under h. For x 6= α, these pre-images x/2 and x/2 + 1/2

lie in either the semicircle (∗1, ∗2) or in the semicircle (∗2, ∗1). We let L̃x be the pre-image

that lies in L and let R̃x := L̃x+ 1/2 be the other pre-image of x, lying in R. Let ∼ be an

equivalence relation on T, with a marked point α ∈ T. Here are some properties that ∼ may

have:

1. Forward invariant: x ∼ y =⇒ h(x) ∼ h(y)

2. Backward Invariant: For x, y 6= α, we have x ∼ y =⇒ L̃x ∼ L̃y and R̃x ∼ R̃y. If

x 6= α and x ∼ α, then L̃x ∼ ∗1 and R̃x ∼ ∗1.

3. Closed: If xn → x and yn → y and xn ∼ yn for all n then x ∼ y.
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Following [57], any equivalence relation satisfying properties 1) and 2) above is said to be

invariant.

The minimal α-equivalence is the minimal closed invariant equivalence relation ∼α for

which ∗1 ∼α ∗2. It is a lamination, see [57, Proposition II.4.5].

The following general observation about invariant relations will be useful throughout the

rest of the chapter, and is easily proved by induction.

Lemma 3.2.1. Fix α ∈ T and suppose ∼ is a forward and backward invariant equivalence

relation with respect to α. Then for every x ∈ T and t ≥ 0, we have ht([x]∼) = [ht(x)]∼.

Backwards invariance of ∼α allows us to construct some chords of ∼α concretely. Recall

that L̃ and R̃ are the continuous inverse branches of h on T\{α}. Every finite word

g ∈ {L,R}∗ encodes a composition of such mappings, where we use the usual right to left

ordering convention for function composition. Denote this mapping by g̃.

Since each function in the composition g̃ is only well defined away from α, the domain of

g̃ is T\Ag where Ag is some subset of the postcritical set Pα := {htα : 0 ≤ t ≤ |g|}. In fact,

it is easy to see that

Ag = {x ∈ T : σ̃tg(x) = α for some 1 ≤ t ≤ |g|} (3.2)

where we recall that σ is the left shift operator on words. Notice that the derivative of g̃ is

2−|g| and g̃ is linear on each component of T\Ag.

Since α is not periodic, ∗1 and ∗2 are not in the postcritical set Pα. Therefore g̃∗1 and g̃∗2

are well defined for every choice of g. The following observation follows immediately from

backwards invariance.

Proposition 3.2.2. For all g ∈ {L,R}∗, we have g̃∗1 ∼α g̃∗2.

If g̃{∗1, ∗2} is a leaf of the minimal equivalence, and g̃ is finite, we say that |g| is the depth

of that leaf. The choice of g̃ used to represent the leaf is unique because α is not periodic, so

this is well defined.
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3.2.2 Itineraries and the Dynamical α-Equivalence ≈α

In the course of our construction we will need the following alternative description of the

lamination ∼α, in terms of itineraries. Every point in T lies in either L,R or {∗1, ∗2}. See

Figure 3.1a. For x ∈ T, the itinerary Iα(x) ∈ {L,R, ?}∞ is an infinite sequence on a three

letter alphabet, which keeps track of which half of the circle the iterates of x lie in. It is

defined as follows:

Iα(x)n =


L if hnx ∈ L

R if hnx ∈ R

? if hnx ∈ {∗1, ∗2}.

for n ≥ 0.

It follows immediately from the definitions that h : T → T is semiconjugate to the left

shift σ : {L,R, ?}∞ → {L,R, ?}∞, which maps σ : u0u1u2 · · · 7→ u1u2 . . . . In other words

Iα(hx) = σIα(x). We also have

LIα(x) = Iα(L̃x), RIα(x) = Iα(R̃x), for x ∈ T\{α}. (3.3)

The itinerary Iα(α) plays a special role and it is called the kneading sequence for α. When

α is combinatorially semihyperbolic (see Definition 3.2.5), Iα(α) is not periodic. Since we are

only interested in combinatorially semihyperbolic parameters, we will assume that Iα(α) is

not periodic for the rest of this chapter (except possibly in Section 3.4). This also implies

that α is not periodic under iteration by h.

The dynamical α-equivalence ≈α is the smallest equivalence relation such that points with

the same itinerary are identified, where the ? symbol is used as a wildcard when comparing

two itineraries.

Formally, this is described as follows. We say that an infinite word g ∈ {L,R, ?}∞

is precritical if it can be written as g = usIα(α) where u ∈ {L,R}∗ is a finite word and

s ∈ {L,R, ?}. Note that by nonperiodicity of Iα(α), such a decomposition, if it exists,

is unique. If g is precritical and g = usIα(α) as above, then define the infinite words
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gL = uLIα(α), gR = uRIα(α) and g? = u ? Iα(α). Then ≈α is defined as follows:

x ≈α y ⇐⇒

I
α(x) = Iα(y), or Iα(x), Iα(y) are precritical and

Iα(x)? = Iα(y)?.

(3.4)

Note that Iα(x)? = Iα(y)? iff Iα(x)L = Iα(y)L iff Iα(x)R = Iα(y)R iff Iα(y) ∈ {Iα(x)L, Iα(x)R, Iα(x)?}.

In particular, if Iα(x) is precritical and y ∈ T, then x ≈α y iff Iα(y) ∈ {Iα(x)L, Iα(x)R, Iα(x)?}.

If Iα(x) is not precritical then the only way that y can be ≈α equivalent to x is if Iα(y) = Iα(x).

From this we see that ≈α as defined in (3.4) is an equivalence relation.

From (3.3) we see that ≈α is forward and backward invariant, in particular Lemma 3.2.1

applies to ≈α and therefore ht[x]≈α = [htx]≈α for all x ∈ T and t ≥ 0.

If Iα(x) is precritical then this is equivalent to saying that htx ∈ [∗1] for some t ≥ 0. By

the above this is also equivalent to saying that ht[x] = [∗1].

We see that Iα(α) is not precritical, because Iα(α) is not periodic. As a consequence, [α]

is not periodic, in other words ht[α] = [htα] 6= [α] for t ≥ 1.

This then implies that ht[∗1] 6= [∗1] for t ≥ 1. We will use these observations repeatedly

throughout the rest of this chapter.

We will also need the following results.

Theorem 3.2.3 ([8, Proposition 6.2]). Suppose Iα(α) is nonperiodic. Then all equivalence

classes of ≈α are finite.

In our setting, the minimal equivalance ∼α defined in the previous subsection is the same

as the dynamical equivalence ≈α.

Theorem 3.2.4 ([8, Theorem 1]). Suppose Iα(α) is nonperiodic. Then ∼α=≈α.

With the concept of itineraries, we can now state our definition of combinatorial semihy-

perbolicity. It is clearly inspired by Theorem 3.1.4 and the characterization of the topology

of T/ ≈α (Proposition 3.2.7). See also the proof of Theorem 3.1.6.

Definition 3.2.5. We say that α ∈ T is combinatorially semihyperbolic if there exists Mα > 0

integer such that for t ≥ 1, Iα(htα)|Mα 6= Iα(α)|Mα .
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Clearly, if α is combinatorially semihyperbolic, then its kneading sequence Iα(α) is

nonperiodic.

3.2.3 Convergence in T/ ≈α in terms of itineraries

In this subsection we will develop a useful characterization (Proposition 3.2.7) of the convergent

sequences in T/ ≈α in terms of itineraries of points in the sequence.

The idea is that nearby points should have itineraries that agree on long initial subwords.

However, the definition is a little complicated because ? needs to be treated as a wildcard;

a good example to keep in mind is the points ∗1 + ε and ∗1 − ε for ε > 0 small. They are

close in T/ ≈α, that is [∗1 − ε] and [∗1 + ε] converge to the same point in T/ ≈α as ε → 0,

but their itineraries differ at the first letter.

Motivated by this example, we say that two length M words g1, g2 ∈ {L,R, ?}M are

M -close if there exists a finite word u ∈
⋃M−1
k=0 {L,R}j of length at most M − 1 such that

g1 = us1v and g2 = us2v, where s1, s2 ∈ {L,R, ?}, and v is a (possibly empty) initial subword

of Iα(α) of length M − |u| − 1. In particular, if g1 = g2, then they are M -close.

We can extend this definition to words of length greater than M , including infinite words,

by saying that two such words are M -close if their restrictions to the first M letters are

M -close. We also say that two points x, y ∈ T are M -close if their itineraries are M -close.

We use the notation x
M� y and Iα(x)

M� Iα(y) to denote M -closeness.

For each x ∈ T, we define the M -neighborhood BM (x) around x to be the set of points in

T which are M -close to x.

First we prove that if y is sufficiently close to x with respect to the standard topology on

T, then y is M -close to x.

Lemma 3.2.6. For each M > 0 and x ∈ T, there exists an open neighborhood UM(x)

containing [x]≈α such that y ∈ UM(x) =⇒ x
M� y. If in addition Iα(x) is not precritical, we

can strengthen the conclusion by replacing it with y ∈ UM(x) =⇒ Iα(x)|M = Iα(y)|M .

Proof. Recall that Iα(x) is not precritical if and only if ht[x] 6= [∗1] for t ≥ 0. From this we
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see that Iα(x) is not precritical if and only if ht[x] = [htx] never intersects {∗1, ∗2} for t ≥ 0.

First suppose that the sets ht[x] never intersect {∗1, ∗2} for t ≥ 0. For each x′ ∈ [x] we

can choose an open arc Ix′ , containing x′, small enough that htIx′ ∩ {∗1, ∗2} is empty for

0 ≤ t ≤ M . Now, for 0 ≤ t ≤ M , we have that htIx′ and htx′ lie in the same semicircle

(either L or R). Therefore any y ∈ Ix′ has the same itinerary as x′ for the first M letters.

But every x′ ∈ [x] has the same itinerary as x for the first M letters because Iα(x) is not

precritical. Therefore every y ∈ UM :=
⋃
x′∈[x] Ix′ has the same itinerary as x for the first M

letters. Moreover, the first M letters of the common itinerary all lie in {L,R}.

Now suppose ht[x] = [∗1] for some 0 ≤ t ≤M . This can happen for at most one value of

t because [∗1] is not periodic.

Let T be the unique time such that hT [x] = [∗1], then we can write Iα(x)|M = usv where

u ∈ {L,R}T , s ∈ {L,R, ?}, and v ∈ {L,R}M−T−1 is an initial subword of Iα(α). For each

x′ ∈ [x], let Ix′ be an open interval containing x′ and small enough such that htIx′ does not

intersect {∗1, ∗2} for 0 ≤ t ≤ T − 1 and T + 1 ≤ t ≤M .

The same reasoning as in the previous case shows that if y ∈
⋃
x′∈[x] Ix′ then Iα(y) = Ia(x),

except possibly at the index t = T .

The converse to the previous lemma is also true; if x is M -close to y for large M then y is

close to [x]≈α in T. This gives us the characterization of convergence we wanted.

Proposition 3.2.7. Suppose xn is a sequence on T, and suppose x ∈ T. Then [xn]→ [x] in

the quotient topology of T/ ≈α iff for all integer M , there exists N0 such that n > N0 implies

Iα(xn) is M-close to Iα(x).

Before proving this proposition, we need a few lemmas.

The next lemma is a sort of triangle inequality.

Lemma 3.2.8. For each M > 0 there exists K > 0 such that the following holds. If x
M+K� z

and z
M+K� y then x

M� z.
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Proof. Suppose x
M+K� z and z

M+K� y. Then

Iα(x)|M+K = uav

Iα(z)|M+K = ubv (3.5)

Iα(z)|M+K = u′a′v′ (3.6)

Iα(y)|M+K = u′b′v′

where u, u′ ∈ {L,R}∗ are finite words, a, b, a′, b′ ∈ {L,R, ?} and v, v′ are initial subwords

of Iα(α). Suppose first that |u| ≥M . If |u′| ≥M too then we are done, because Iα(x)|M =

u|M = Iα(z)|M = u′|M = Iα(y)|M .

On the other hand if |u′| < M , we have Iα(x)|M = u|M = Iα(z)|M = u′a′v′′ where v′′ is

an initial subword of v′, and hence v′′ is an initial subword of Iα(α). Also Iα(y)|M = u′b′v′′,

so x
M� y.

The case where |u′| ≥M and |u| < M is then taken care of by the symmetric argument,

so now suppose |u′| < M and |u| < M . This is the only case where we use the fact that

K is large and Iα(α) is nonperiodic. Since Iα(α) is nonperiodic, every shift σiIα(α) must

eventually disagree with Iα(α) if we look deep enough into the sequence. We choose K to be

the largest index we need to observe to find this disagreement, when we restrict to shifts of

length less than M . That is,

K = sup
0≤i≤M

inf{T : σiIα(α)|T 6= Iα(α)|T}.

It suffices to show that |u| = |u′| because then the two different ways of writing Iα(z)

forces u = u′ and hence x
M� y. So suppose for contradiction that, say, |u| < |u′| and write

u′ = ucw for some c ∈ {L,R} and some (possibly empty) word w ∈ {L,R}∗. Note that

0 ≤ |w| < |u′| < M .

Applying the shift σ|u|+1 to (3.5) and (3.6) gives

σ|u|+1(Iα(z)|M+K) = v

σ|u|+1(Iα(z)|M+K) = wa′v′
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which shows σ|w|+1v = v′. But recall that v and v′ are initial subwords of Iα(α), and the

lengths of v and v′ are at least K, so this means that we actually have σ|w|+1Iα(α)|K = Iα(α)|K .

This contradicts the definition of K.

The following lemma says that the topology induced by the BM is fine enough to distinguish

≈α classes.

Lemma 3.2.9. For each x ∈ T and M > 0 there exists K > 0 such that BM+K(x) ⊂ BM (x).

Furthermore,

[x]≈α =
⋂
M

BM(x) =
⋂
M

BM(x).

Proof. We begin by proving the first equality. If x ≈α y, it follows from the definitions

that x
M� y for all M . On the other hand, suppose x

M� y for all M . Let T be the smallest

number that Iα(x)|T+1 6= Iα(y)|T+1, if T = ∞ then we are done so suppose T < ∞. Let

u = Iα(x)|T = Iα(y)|T . Then for each M > T we have x|M = us1v and y|M = us2v

where s1, s2 ∈ {L,R, ?} and v is an initial subword of Iα(α). Letting M → ∞ shows that

x = us1I
α(α) and y = us2I

α(α), which means x ≈α y.

Now we turn to the second equality. Fix M > 0 and x ∈ T and suppose K > 0 is large.

Suppose yi ∈ BM+K(x) is a sequence converging in T to y ∈ BM+K(x).

Lemma 3.2.6 implies that for sufficiently large i, we have yi
M+K� y. Taking z = yi in

Lemma 3.2.8 implies that x
M� y. Thus BM+K(x) ⊂ BM(x), and this proves the second

equality in the statement of the lemma.

Proposition 3.2.7 now follows from the next lemma.

Lemma 3.2.10. Suppose x ∈ T, and let U ⊂ T be an open set containing [x]. For sufficiently

large M , we have BM(x) ⊂ U .

Proof. To prove the claim, suppose for contradiction that there is a sequence yj ∈ T\U

and Mj ∈ R such that yj ∈ BMj
(x) and Mj → ∞. By compactness we can assume that

yj → y ∈ T\U . We have from Lemma 3.2.9 that for each M , the tail of the sequence (yj) is
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contained in BM(x). Therefore y ∈
⋂
M BM(x) and by Lemma 3.2.9 we get y ∈ [x], which

contradicts the fact that U contains [x].

Proof of Proposition 3.2.7. Assume [xn]→ [x] in T/ ≈α. Let M ≥ 0 be arbitrary. By Lemma

3.2.6 there exists an open neighborhood U of [x] in T such that y ∈ U =⇒ y
M� x. For

sufficiently large n we must have xn ∈ U , hence xn
M� x. Since M was arbitrary, this proves

the ‘only if’ direction.

For the other direction, let W be an arbitrary open neighborhood of [x] in T/ ≈α, and let

U be its preimage under the quotient map x 7→ [x]. Then U is an open set containing [x] ⊂ T.

By Lemma 3.2.10, we have for sufficiently large M that BM(x) ⊂ U , and this completes the

proof.

3.2.4 Cylinder Sets and Boundary Leaves

The material in this section can also be found in [8, Section 4], but it is a crucial part of the

proof, so we provide a self-contained presentation here.

If g ∈ {L,R}∗ a finite word, define the (open) cylinder C(g) ⊂ T to be the set of points

whose initial itinerary is equal g, that is C(g) = {x ∈ T : Iα(x)||g| = g}. These sets are

closely related to the M -neighborhoods introduced in the previous section, indeed every

M -neighborhood is (up to a finite boundary set) equal to a union of finitely many cylinder

sets.

One important part of our proof of Theorem 3.1.5 is in finding leaves in the relation ∼α
which have one endpoint close to a given point x. We use this idea twice, in Lemma 3.3.2

and also in the Lemma 3.3.7. We do this by considering cylinder sets containing x.

1. By the results of the previous section, in particular Lemma 3.2.9, we see that C(Iα(x)|n)

converges to [x] as n→∞. Actually this only makes sense for x that are not precritical,

since we have not defined the cylinder sets for words that contain the symbol ?.

Proposition 3.2.11 deals with this issue.
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2. On the other hand, every boundary chord of a cylinder C(g) is actually a leaf of the

lamination (Proposition 3.2.12).

The combination of these results allows us to construct the desired approximations for every

x. The rest of this section contains the proofs of these two statements, and the approximation

result is summarized in Proposition 3.2.13.

Recall from Section 3.2.2 that an itinerary g ∈ {L,R, ?}∞ is said to be precritical if it can

be written in the form g = usIα(α) where u ∈ {L,R}∗ and s ∈ {L,R, ?}. If g is precritical,

gL = uLIα(α) and gR = uRIα(α) are the words obtained from g by replacing the symbol ?

with L and R respectively.

Proposition 3.2.11. Suppose x ∈ T and let g = Iα(x) ∈ {L,R, ?}∞. First suppose g is not

precritical. Then

[x]≈α =
⋂
n≥1

C(g|n) =
⋂
n≥1

C(g|n).

On the other hand, if g is precritical, then

[x]≈α =
⋂
n≥1

C(gL|n) ∪
⋂
n≥1

C(gR|n). (3.7)

Moreover, in this case, ⋂
n≥1

C(gL|n) ∩
⋂
n≥1

C(gR|n) = ũ{∗1, ∗2},

where u ∈ {L,R}∗ is defined implicitly via g? = usIα(α) for some s ∈ {L,R, ?}.

Proof. Consider first the case where g is not precritical. It is clear that C(g|n) ⊂ Bn(x). So

by Lemma 3.2.9, the intersection
⋂
n≥1C(g|n) is contained inside [x]≈α On the other hand,

if y ∈ [x]≈α , this means that Iα(y) = Iα(x). So y ∈ C(g|n) for all n. We have shown that⋂
n≥1C(g|n) ⊂ [x]≈α ⊂

⋂
n≥1C(g|n), so we are done.

Now consider the case where g is precritical and write g = usIα(α). Again we have for all

n ≥ 1 that C(gL|n) ⊂ Bn(x) and C(gR|n) ⊂ Bn(x), therefore
⋂
n≥1C(gL|n)∪

⋂
n≥1C(gR|n) ⊂

[x]≈α .

For the other direction, suppose y ∈ [x]≈α . There are three cases to consider.
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• If Iα(y) = uLIα(α) = gL then y ∈ C(gL|M) for all M .

• If Iα(y) = uRIα(α) = gR then y ∈ C(gR|M) for all M .

• It remains to check the case Iα(y) = u ? Iα(α). If this is the case, then y ∈ {ũ∗1, ũ∗2}.

Assume that y = ũ∗1, the other case y = ũ∗2 is similar. We claim that y = ũ∗1 ∈

C(gL|M) for all M . To see this, observe that ∗1 + ε is in L, for all small ε > 0. Also

h(∗1+ε) is close to α, so for sufficiently small ε we have that Iα(∗1+ε)|M = LIα(α)|M , see

Lemma 3.2.6. Therefore we have by the conjugacy (3.3) that ũ(∗1+ε) ∈ C(u(LIα(α)|M )),

and limε→0 ũ(∗1 + ε) = ũ∗1 = y. Here we have that ũ is continuous at ∗1 because ∗1 is

not in the postcritical set Pα (see (3.2) and the surrounding discussion). This proves

the claim, and completes the proof of (3.7).

Now we turn to the proof of the last statement. In the last item above we showed that

ũ∗1, ũ∗2 ∈ C(gL|M) for all M . Similar arguments show that ũ∗1, ũ∗2 ∈ C(gR|M) for all M ,

and this proves that ⋂
n≥1

C(gL|n) ∩
⋂
n≥1

C(gR|n) ⊃ ũ{∗1, ∗2}.

For the reverse inclusion, suppose y ∈
⋂
n≥1C(gL|n)∩

⋂
n≥1C(gR|n). Then y ∈ C(gL||u|+1) =

C(uL), therefore h|u|y ∈ h|u|C(uL) = C(L) = L by continuity and closedness of h. Similarly

h|u|y ∈ R. This shows that h|u|y ∈ L ∩R = {∗1, ∗2}.

On the other hand y ∈ C(gL||u|) = C(u), so y ∈ ũ{∗1, ∗2} as desired.

By (3.3), the cylinder C(g) can also be described as the image of T\Ag under g̃ (recall the

definition of Ag in (3.2)), that is C(g) = g̃(T\Ag). Since g̃ is continuous on each component

of T\Ag, this shows that C(g) is a finite union of disjoint open intervals. Induction on the

length of g shows that the closure of these intervals is disjoint too (nonperiodicity of α is

needed here).

By keeping track of when a cylinder contains α, one sees that boundary chords of cylinders

are always leaves in the minimal equivalence (see Proposition 3.2.2).
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(b) The collection of cylinders C(g) for g ∈

{L,R}3 partitions T up to a finite set. The

boundary leaves of C(LLL) are {∗1 = 1/8, ∗2 =

5/8}, L̃{∗1, ∗2} = {5/16, 9/16} and L̃L{∗1, ∗2} =

{5/32, 9/32}, as we expect from Proposition

3.2.12.

Proposition 3.2.12. Suppose g ∈ {L,R}N is a finite word of length N. Then the boundary

chords of C(g) are all of the form g̃|t{∗1, ∗2} where 0 ≤ t ≤ N − 1. Moreover, g̃|t{∗1, ∗2} is a

boundary chord iff σt+1g is an initial subword of Iα(α).

Proof. We proceed by induction on N = |g|. For N = 1, the result is clear because {∗1, ∗2}

is the boundary chord of C(L) and of C(R). Now suppose sg ∈ {L,R}N+1 where s ∈ {L,R}

and g ∈ {L,R}N . By the induction hypothesis, the boundary chords of C(g) are precisely

the leaves of the form g̃|t{∗1, ∗2} where 0 ≤ t ≤ N − 1 is an integer such that σt+1g is an

initial subword of Iα(α).

The images of the boundary chords of C(g) under s̃ are always boundary chords of
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s̃(C(g)) = C(sg). By the induction hypothesis, all leaves arising in this way are of the form

s̃ ◦ g̃|t{∗1, ∗2} where 0 ≤ t ≤ N − 1 is an integer such that σt+1g = Iα(α)|N−t−1. Note that

1 ≤ t+ 1 ≤ N , that s̃ ◦ g̃|t = ˜(sg)|t+1, and σ(t+1)+1sg is an initial subword of Iα(α).

If α /∈ C(g) then these are the only boundary chords of C(sg). On the other hand if

α ∈ C(g) then {∗1, ∗2} is a new boundary chord of C(sg) = s̃(C(g)). This new boundary

chord is equal to {∗1, ∗2} = s̃g|0{∗1, ∗2}, and σ0+1(sg) = g is an initial subword of Iα(α)

because α ∈ C(g) means that Iα(α)|n = g.

This completes the induction.

As promised, combining the previous two propositions shows that every equivalence class

in ≈α can be approximated by boundary leaves.

Proposition 3.2.13. Let g ∈ {L,R}∞ be an infinite word. Then C(g) :=
⋂
nC(g|n) =

{x1, . . . , xm} is finite. Assume the x1, . . . , xm are arranged in a counterclockwise order. Then

for each i, and each ε > 0 there is an integer n such that g̃|n{∗1, ∗2} is ε-close to {xi, xi+1}

in the Hausdorff sense.

Proof. By Proposition 3.2.11, all the points of
⋂
nC(g|n) belong to the same ≈α class, so by

Theorem 3.2.3,
⋂
nC(g|n) is finite, and we can write

⋂
nC(g|n) = {x1, . . . , xm}.

Let U = ∪i(xi − ε, xi + ε) be the union of ε-balls around each point in C(g). Assume

ε is small enough that these balls are disjoint. By Lemmas 3.2.10 and 3.2.9, we have for

sufficiently large M that U ⊃ BM(x) ⊃ C(g|M) ⊃ {x1, . . . , xm}.

Fix M sufficiently large as above, and let (a, b) be a component of T\{x1, . . . , xm}. Let z

be a point of T\U inside (a, b), and let I be the component of T\C(g|M) containing z. By

construction, the endpoints of I are within distance ε of xi and xi+1, and by Proposition

3.2.12, the endpoints of I are of the form {ũ∗1, ũ∗2} where u is an initial subword of g|M .

In fact, in Lemma 3.3.2, we will need to construct several distinct approximations to

the equivalence class [≈α], so it is important our approximations can be chosen to be strict

approximations.
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Lemma 3.2.14. Let g = LIα(α) or g = RIα(α) so that C(g) = [∗1] ∩ L or C(g) = [∗2] ∩R

respectively.

Let xi, xi+1 be adjacent elements of C(g). If either of the following conditions hold, the

approximations in the conclusion of Proposition 3.2.13 may be taken to be strict in the sense

that g̃|n∗1 and g̃|n∗2 are not equal to any of the elements in C(g).

• At least one of the xi, xi+1 is not in {∗1, ∗2}.

• {xi, xi+1} = {∗1, ∗2}, and [∗1] = {∗1, ∗2}.

In the case not covered by this lemma, where {xi, xi+1} = {∗1, ∗2} and |[∗1]| > 2, it is

impossible to find strict approximations, as this would violate flatness of ≈α.

Proof. Let xi, xi+1 ∈ C(g) be the chord that we wish to approximate.

Suppose first that one of the xi, xi+1 is not in {∗1, ∗2}. Let {ũ∗1, ũ∗2} be the approximating

leaf of {xi, xi+1} guaranteed by Lemma 3.2.13. Assume for contradiction that {ũ∗1, ũ∗2}

intersects [∗1]. Then ũ∗1 ∼α ∗1. Applying h|u|+1 to both sides yields [α] = h|u|[α], so since [α]

is nonperiodic we must have |u| = 0. If ε is sufficiently small, this contradicts the fact that

{ũ∗1, ũ∗2} approximates {xi, xi+1}, because {ũ∗1, ũ∗2} = {∗1, ∗2} is not equal to {xi, xi+1},

since we assumed that xi+1 /∈ {∗1, ∗2}.

Now we consider the case where xi and xi+1 are both in {∗1, ∗2}, and [∗1] = {∗1, ∗2}.

Assume first that g = LIα(α), the other case is similar.

We will go through the construction of Proposition 2.4.4 again, making a small modification.

Fix M large enough that C(g|M) is contained in an ε-neighborhood of {∗1, ∗2}. Assume that

ε is small enough that this neighborhood does not contain α.

Let I be the component of T\C(g|M) that contains α. Then I is contained inside

L = (∗1, ∗2).

Consider the boundary chord l joining the endpoints of I, which by Proposition 3.2.12

is of the form ũ{∗1, ∗2} where u is an initial subword of g|M . Note that I is not equal to L

because C(g|M) ∩ L = C(g|M) has positive total length, so ũ is not the identity and u is not
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the empty word. In particular, the boundary chord l = ũ{∗1, ∗2} is a strict approximation

(close, but not equal) of {∗1, ∗2}.

3.3 All scales are good

In this section we prove Theorem 3.1.5, that is for α combinatorially semihyperbolic, we show

that the equivalence relation ∼α is qs-good at all scales. It suffices to consider dyadic scales

r = 2−N .

The construction is sketched in Figure 3.2 and 3.3. The idea is to first show that ∼ is

qs-thick across intervals around ∗1 and ∗2 at scale N = 1, this is Proposition 3.3.3. To get

the (uniformly perfect) Cantor set A for the gluing between ∗1 and ∗2, we will use periodic

leaves near ∗1 and ∗2 to generate a linear iterated function system. The existence of such

periodic leaves is shown in Lemma 3.3.2. See Figure 3.2a. After this gluing at the large

scale is constructed, we use backwards iteration to get the Cantor set around any point at

any scale. This existence of backwards iterates that transport the gluing at large scale to a

gluing at an arbitrary point x ∈ T and arbitrary scale r = 2−N is given by the construction

of circular chains, see Definition 3.3.5 and Lemma 3.3.7.

The construction will rely on the following fact that the class of the critical point [∗1]

is contained in the union of exactly two components I ′ and I ′′ of T\Pα, where we recall

that Pα = {htα : t ≥ 0}. In particular this means that all compositions g̃ of L̃s and R̃s are

well defined on I ′ and I ′′ (see (3.2)), and hence the images g̃(I ′) and g̃(I ′′) are connected

intervals. See Figure 3.2a. This guarantees that if we can construct the good gluing across

the neighborhoods I ′,I ′′, then we can pull them back to different scales and locations via the

inverse branches of hn.

Proposition 3.3.1. Let I ′ and I ′′ be the components of T′ := T\Pα containing ∗1 and ∗2

respectively. Then I ′ and I ′′ are distinct, and [∗1] ⊂ I ′ ∪ I ′′.

Note that the combinatorial semihyperbolicity (Definition 3.2.5) assumption on α, to-

gether with Lemma 3.2.6, implies that ∗1, ∗2 /∈ Pα. To see this, suppose for contradiction
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(a) The postcritical set Pα is marked (green)

on T. The diameter D = {∗1, ∗2} is in blue.

The hyperbolic geodesics denote leaves in ∼α.

Here α = 9/56, I ′ = [9/14, 1/7] and I ′′ =

[4/7, 9/14]. Notice that [∗1] ⊂ I ′ ∪ I ′′.

æ

æ

æ

æ

æ

æ

(b) Periodic leaves (dashed) with endpoints

in I ′ and I ′′ are constructed (Lemma 3.3.2).

Here we only show two leaves; the actual con-

struction requires two pairs of such leaves.

Figure 3.2: The steps involved in the proof of Theorem 3.1.5, in the case α = 9/56. Continued

in Figure 3.3.
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(a) We use the periodic leaves near to the

diameter to construct an IFS, resulting in

a gluing between the intervals I1 and I4

and between I2 and I3. (Proposition 3.3.3).

The gluing is resprented by the thick black

family of geodesics, but in actuality the

gluing is only supported on a linear Cantor

set.

ææ x

g T

(b) We construct the gluing at x ∈ T and

scale 2−N by pulling back the gluing from

the previous step. The cylinder of depth N

containing x is bounded by leaves of the form

g̃|tj{∗1, ∗2} for some integers tj ≤ N , where

g = Iα(x)...

(c) ...so, as long as tj is not too small, g̃|tjI1 and

g̃|tjI4 (and g̃|tjI2 and g̃|tjI3 ) have diameter

comparable to 2−N . Note that even though

the figure shows gluings inside the cylinder, we

do not use them in this construction - we only

use the gluings on the exterior of the cylinder.

ææ x

g T
g
`

T

(d) Sometimes one of the boundary leaves (the

red one) is of the form gN−t{∗1, ∗2} where t

is too large, so that pulling back the gluing

from I1 to I4 and I2 and I3 results in a gluing

at too large a scale. In this case we use the

leaves of the gap ĝT instead of the red leaf.

Figure 3.3: The steps involved in the proof of Theorem 3.1.5, in the case α = 9/56. Continued

from Figure 3.2.
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that htn(α) → ∗i for some sequence tn → ∞. From Lemma 3.2.6 this implies for suffi-

ciently large n that σtnIα(α) = Iα(htnα)
Mα+1� Iα(∗i) = ?Iα(α), where Mα is the combi-

natorial semihyperbolicity constant. Therefore σtn+1Iα(α)
Mα� Iα(α) and this contradicts

combinatorial semihyperbolicity.

In particular, the components I ′ and I ′′ do exist.

Proof. Since the kneading sequence Iα(α) is not periodic, it is not LLL . . . . Therefore there

exists a postcritical point htα ∈ R. Then α and htα are in different components of T\{∗1, ∗2},

which means that ∗1 and ∗2 are in different components of T\{α, htα}, which means ∗1 and

∗2 are in different components of T\Pα. Thus I ′ and I ′′ are distinct.

Now we turn to the second statement, which is equivalent to saying that all the postcritical

points Pα lie in two components of T\[∗1].

The idea is that if a postcritical point ht∗1 lies in a given component of T\[∗1], then by

flatness the whole class ht[∗1] of that point must lie in that same component. But since h

is expanding on T, any component of T\[∗1] that contains an iterate ht[∗1] of the critical

class must necessarily be ‘large’. The desired result follows if we can show that only two

components are ‘large’.

More precisely, we will now show that if J is a component of T\[∗1] and J contains a

postcritical point htα, t ≥ 1, then the length of J satisfies |J | > 1/4.

For x, y ∈ T ∼= R/Z let |x− y| ∈ [0, 1/2] be the distance between x and y on T, which is

the (normalized) length of the shortest arc joining x to y. Then the distance between any

pair of points x, y ∈ T changes under the action of h according to the tent mapping:

|hx− hy| =

2|x− y| if |x− y| ≤ 1/4

1− 2|x− y| if |x− y| > 1/4.

(3.8)

Let ∗′ and ∗′′ be adjacent points of [∗1], bounding some component J of T\[∗1]. Let

d = | ∗′−∗′′ | = |J |, and suppose d ≤ 1/4. Then we have |h∗′−h∗′′ | = 2d. By (3.8), iterating

h on the leaf {∗′, ∗′′} will yield longer and longer leaves until the length is greater than 1/4.
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(The length of a leaf is defined to be the distance between its endpoints). After that point

the length of the leaf may shrink.

However, the longest leaf in the lamination has length at most 1/2− d. This is because,

by flatness, any leaf in the lamination must have both endpoints in the same component of

T\[∗1]. The points ∗′ ≈α ∗′′ ≈α ∗′ + 1/2 ≈α ∗′′ + 1/2 are all in [∗1] (the easiest way to see

this is by considering itineraries), and the largest component of T\{∗′, ∗′′, ∗′ + 1/2, ∗′′ + 1/2}

has length 1/2− d, so the largest component of T\[∗1] has length at most 1/2− d.

So from (3.8), the iterates ht{∗′, ∗′′} of the leaf never get shorter than 2d = 2|J |. In

particular, for t ≥ 1, ht∗′ and ht∗′′ can never both be in J . Thus, by flatness, ht[∗′] = ht[∗1]

is never contained in J .

We have shown that if a component of T\[∗1] is shorter than 1/4, then it contains no

postcritical points. Now let us use this fact to derive the desired result. Let J be the largest

component of T\[∗1]. Then |J | > 1/4. Since [∗1] = [∗1]≈α is invariant under x 7→ x + 1/2

(again, by considering itineraries), the interval J + 1/2 is a component of T\[∗1] and also has

length equal to |J | > 1/4. This shows that components of length greater than 1/4 occur in

pairs. Since (|J |+ |J + 1/2|) + (1/4 + 1/4) > 1, there can only be one pair of components of

T\[∗1] with length greater 1/4, namely J and J + 1/2. Therefore the postcritical points all

lie in the two components J and (J + 1/2), and the result follows.

A periodic leaf is a leaf such that both endpoints have periodic itineraries. We now show

that we can find a pair of periodic leaves spanning the intervals I ′ and I ′′. These leaves will

be used to generate an iterated function system, giving many leaves between I ′ and I ′′.

Lemma 3.3.2 (Existence of periodic leaves near the main leaf (∗1, ∗2)). There exist infinitely

many distinct periodic leaves l′ with both endpoints in L with one endpoint in I ′ and the other

endpoint in I ′′. The same statement holds for R in place of L.

Proof. We will only construct such leaves in L, the argument for getting leaves in R is exactly

the same. First we prove that we can find a leaf l in L with one endpoint in I ′ and the

other endpoint in I ′′. This leaf will be of the form ũ{∗1, ∗2} for some u ∈ {L,R}∗. If u is
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sufficiently contracting then this tells us that ũ2 maps I ′ into I ′ and I ′′ into I ′′. We then

use the contraction principle to find fixed points a′, a′′ of ũ2 in I ′ and I ′′ respectively. By

definition, a′ and a′′ will be periodic with periodic itinerary equal to u∞. In particular

a′ ≈α a′′. Now we provide the details.

1. Let g = Iα(∗1) = ?Iα(α). By Proposition 3.2.11, we have

[∗1] =
⋂
n

C(gL|n) ∪
⋂
n

C(gR|n) =
⋂
n

C(LIα(α)) ∪
⋂
n

C(RIα(α)).

Since, by definition, C(L · · · ) and C(R · · · ) are contained in L and R respectively,

we conclude that [∗1] ∩ L ⊂
⋂
nC(gL|n). Taking the closure of both sides yields

[∗1] ∩ L ⊂
⋂
nC(gL|n). But the reverse inclusion holds too, so we get

[∗1] ∩ L =
⋂
n

C(gL|n). (3.9)

Let [∗1]∩L = {y1, . . . , ym} where the yi are assumed to be indexed in counterclockwise

order with y1 = ∗1 and ym = ∗2. Let i be the maximal index such that yi ∈ I ′. Then

yi+1 ∈ I ′′ by Proposition 3.3.1.

By Theorem 3.2.13, the leaf {yi, yi+1} is the limit of leaves of the form {g̃n∗1, g̃n∗2} for

a sequence of finite words gn ∈ {L,R}∗. All these words are initial subwords of the

word gL = LIα(α), and by Lemma 3.2.14 we can assume that lim |gn| =∞.

2. Since {g̃n∗1, g̃n∗2} converges to a leaf with endpoints in I ′ and I ′′, we have for sufficiently

large n that g̃n maps ∗1 into I ′ and ∗2 into I ′′, or ∗1 into I ′′ and ∗2 into I ′. By replacing

gn with gngn we can assume that the former occurs.

Since limn |gn| =∞, we have limn 2−|gn| = limn |g′n| = 0, so for sufficiently large n we

have that g̃n maps I ′ into I ′ and I ′′ into I ′′.

Also, g̃n has constant derivative 2−|gn| < 1, so by the contraction principle g̃n|I′ and

g̃n|I′′ have fixed points a′, a′′ in I ′, I ′′ respectively. Using (3.3) we see that

Iα(a′) = Iα(g̃na
′) = gnI

α(a′),
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and hence a′ has periodic itinerary Iα(a′) = Iα(a′′) = g∞n ∈ {L,R}∞. The same

argument shows that Iα(a′′) = g∞n too. Thus {a′, a′′} is a periodic leaf with one

endpoint in I ′ and the other endpoint in I ′′, and {a′, a′′} ⊂ L.

Step 2) shows that every sufficiently large n yields a periodic leaf with endpoints in I ′ and

I ′′. For our construction below we will need two different periodic leaves, to form an iterated

function system. We will now show that we can choose n′ 6= n such that the applying the

construction in Step 2) to gn′ and gn yields different periodic leaves. We do this by choosing

n′ and n so that g∞n 6= g∞n′ . Then the periodic leaves that result from applying step 3) to

gn and gn′ will be different because they will have different itineraries and hence will not

intersect.

We need to consider two cases.

Suppose first that g := LIα(α) is eventually periodic (recall that g cannot be actually

periodic), which means there exists some preperiod t ≥ 1 such that Iα(htα) is periodic of

some period K ≥ 1. Choose M large enough that M is greater than the preperiod t of Iα(α),

and large enough that the first M letters of LIα(α) are enough to ‘certify’ that g = LIα(α)

is not periodic of period K. That is, choose M ≥ t large enough that

LIα(α)|M is not of the form w∞|M for any w ∈ {L,R, ?}K .

Let n be large enough that |gn| ≥ M , and let n′ be large enough that |gn′ | − |gn| ≥ M .

Write g′n = gnu where |u| = |gn′ | − |gn| ≥M (recall that gn and gn′ are both initial subwords

of g = LIα(α)). Suppose for contradiction that g∞n = g∞n′ , then applying the shift σ|gn| to

both sides yields g∞n = ug∞n′ .

Since gn is an initial subword of g of length at least M , and u has length at least M , the

equality g∞n = ug∞n′ implies g|M = u|M . However, u is an initial subword of something that

is periodic of period K (namely, σ|gn|g), so this contradicts the definition of M . Therefore

g∞n 6= g∞n′ .

Now we consider the case where g = LIα(α) is not eventually periodic. Fix n, and choose

M large enough that the first M letters of σ|gn|g are enough to ‘certify’ that σ|gn|g is not
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periodic of period |gn|. That is, choose M large enough that

(σ|gn|g)|M is not of the form w∞|M for any w ∈ {L,R, ?}|gn|.

Then choose n′ large enough that |gn′ |−|gn| ≥M . Write g′n = gnu where |u| = |gn′ |−|gn| ≥M

(recall that gn and gn′ are both initial subwords of g = LIα(α)). Suppose for contradiction

that g∞n = g∞n′ , then applying the shift σ|gn| to both sides yields g∞n = ug∞n′ .

Restricting to the first M letters yields g∞n |M = u|M . Now, u is an initial subword of

σ|gn|g, so we get g∞n = (σ|gn|)g|M , which contradicts the definition of M .

The points ∗1 and ∗2 cut I ′ and I ′′ respectively into two open subintervals each, giving

a total of four intervals J−1 , J
−
2 , J

+
2 , J

+
1 (assumed to be in counterclockwise order). Here we

choose the indexing on the {Jj} such that ∗1 is the counterclockwise endpoint J−1 and the

clockwise endpoint of J−2 , and ∗2 is the counterclockwise endpoint of J+
2 and the clockwise

endpoint of J+
1 . Thus J−1 ∪ J−2 = I ′ and J+

1 ∪ J+
2 = I ′′, and J−1 ∪ J+

1 ⊂ R while J−2 ∪ J+
2 ⊂ L.

Let l be a periodic leaf in ∼α of period p, where the period is defined as the smallest

integer p such that hp fixes both endpoints of l. Observe that the iterates of each endpoint

never lie in [∗1], as this would contradict nonperiodicity of [∗1]. In other words neither

itinerary is precritical, therefore by (3.4) , the itineraries of both points are equal, and we

will use Iα(l) to denote this common itinerary.

The common itinerary of both points is periodic of period p, so we can write Iα(l) = w∞

where w = Iα(l)|p. Observe that w̃ is a contraction that fixes the endpoints of l, indeed w̃ is

just the inverse branch of hp that fixes the endpoints of l. If we let w = Iα(l)|2p then w̃ is

orientation preserving and still fixes the endpoints of l, and we will assume this.

The contractions arising from the periodic leaves we constructed in Lemma 3.3.2 generate

an iterated function system, giving us a Cantor set on which a gluing between I ′ and I ′′ is

supported (Recall the definitions of Section 2.5).

Proposition 3.3.3 (Existence of Cantor set around main leaf). J−1 is qs-glued to J+
1 and

J−2 is qs-glued to J+
2 . In other words, r = 1 is a qs-good scale of degree 2 at ∗1 (and ∗2).
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Proof. First we show that J−1 is glued to J+
1 . From Lemma 3.3.2 we get a pair of distinct

periodic leaves l, l′ each with one endpoint in J−1 and the other endpoint in J+
1 . Let a−, a+ be

the endpoints of l in J−1 and J+
1 respectively, and let a′−, a′+ be the endpoints of l′ in J−1 and

J+
1 respectively. Let H−1 be the closed subinterval of J−1 with endpoints {a−, a′−} and H+

1 be

the closed subinterval of J+
1 with endpoints {a′+, a+}. Let ϕ : H−1 → H+

1 be the linear (w.r.t.

arclength) map that takes a− to a+ and a′− to a′+.

As in the above discussion, let w = Iα(l)|2p and w′ = Iα(l′)|2p′ where p and p′ are the

periods of l and l′ respectively. Recall that w̃ fixes a− and a+ while w̃′ fixes a′− and a′+, and

w̃ and w̃′ are orientation preserving.

Consider the restrictions w̃|H−1 and w̃|H+
1

of w̃ to H−1 and H+
1 respectively. They are

conjugate:

w̃|H+
1
◦ ϕ = ϕ ◦ w̃|H−1 . (3.10)

To see this, note that both sides of the equation are linear mappings with the same derivative,

and they are equal when evaluated at a−, and they are both of the same orientation class.

Similarly, w̃′|H+
1
◦ ϕ = ϕ ◦ w̃′|H−1 holds for the linear maps induced by the other periodic

leaf, l′.

Consider the linear iterated function systems generated by the contractions w̃ and w̃′ on

each of the intervals H−1 and H+
1 . Let A−1 and A+

1 be the respective limit sets. That is, A−1 is

the closure of the orbit of the two endpoints ∂H−1 = {a−, a′−} of H−1 under arbitrary finite

compositions of w̃|H−1 and w̃′|H−1 , and similarly for A+
1 . Since w̃, w̃′ are linear contractions on

an interval, the limit set is a Cantor set and it is an easy exercise to show that the limit sets

are uniformly perfect.

We claim that x ∼ ϕ(x) for all x ∈ A−1 . This is true by definition when x = a− or x = a′−.

On the other hand, backwards invariance of ∼ and the conjugacy (3.10) yields, for x ∈ H−1 :

x ∼ ϕ(x) =⇒ { w̃x ∼ w̃ϕ(x) = ϕ(w̃x) and w̃′x ∼ w̃′ϕ(x) = ϕ(w̃′x) }.

By induction, we get x ∼ ϕ(x) for all images of a− and a+ under arbitrary finite compositions

of w̃ and w̃′. By topological closedness of ∼ we get x ∼ ϕ(x) for all x ∈ A−1 .
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Thus we have constructed a gluing between J−1 and J+
1 where ϕ is not only quasisymmetric

but linear, and A−1 , A
+
1 are not only uniformly perfect, but are linear Cantor sets. A similar

argument shows that J−2 and J+
2 are glued together on some Cantor sets A−2 and A+

2 . Thus,

r = 1 is a good scale at ∗1 (and ∗2),

To get the gluing at scale r = 2−N and x ∈ T, we will pullback the gluing we just

constructed. For certain x at certain scales, this can be done fairly directly.

Lemma 3.3.4. Fix N > 0 integer. Suppose x ∈ T and let g = Iα(x). If g|N = u ? Iα(α)|N
where N −Mα ≤ |u| ≤ N , then r = 2−N is a L-qs-good scale for x, where L only depends on

Mα (the combinatorial semihyperbolicity parameter)

Proof. We see that ũ maps ∗1 or ∗2 to x. By backwards invariance of ∼ and linearity of

ũ, we can use ũ to pullback the gluing chain constructed in Proposition 3.3.3 to a chain of

degree two around x. Since N −Mα ≤ |u| ≤ N , the backwards iterate ũ maps I ′ and I ′′ onto

intervals of size comparable to 2−N . See the proof of Theorem 3.1.5 below for details.

For general x and N , the construction is more complicated. For instance we will need

to use gluing chains of degree higher than 2. For this purpose it is useful to introduce the

notion of a circular chain.

Definition 3.3.5 (Circular chain). For m ≥ 2, if l1, . . . , lm are mutually non-intersecting

chords in the lamination ∼, let Gap(l) be the component of D\ ∪i li that contains the convex

hull of the 2m endpoints of the li. We say that l1, . . . , lm form an ε-circular chain around

x ∈ T if

• All the chords l1, . . . , lm lie on the boundary of Gap(l).

• All the components of Gap(l) ∩ T have length bounded above by ε.

• The interior of the circular chain, Gap(l) ∩ T, contains x.
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For m = 1, we say that l1 forms a ε-circular chain around x if both endpoints of l1 are within

ε of x, and if x is contained in the interior of the circular chain. In this case (m = 1), the

interior is the smallest component of D\{l1}.

Recall that Mα is the quantitative parameter in the definition of combinatorial semihy-

perbolicity.

For each x ∈ T and each scale r = 2−N , we will construct a � 2−N -circular chain around

x by using boundary leaves of cylinder sets. By Proposition 3.2.12, these boundary leaves are

all pullbacks of the main leaf (∗1, ∗2) under the doubling map h.

Thus for each leaf li of the circular chain, we can pullback the gluing around the main

leaf (Proposition 3.3.3) to a gluing around li.

To make this work we need to ensure that we can construct the desired circular chain

with a bounded number of boundary leaves.

Lemma 3.3.6 (Bound on the number of boundary leaves). Suppose g ∈ {L,R}N is a finite

word of length N . There can be at most one integer t < N −Mα such that g̃|t{∗1, ∗2} is a

boundary leaf of C(g). In particular the number of boundary leaves of C(g) is bounded by

Mα + 1.

Proof. Suppose for contradiction t, t′ ≤ N −Mα− 1 are distinct integers such that g̃|t{∗1, ∗2}

and g̃|t′{∗1, ∗2} are boundary leaves of C(g), and assume without loss of generality that t < t′.

By Proposition 3.2.12, we have g = g|tsv = g|t′s′v′ where s, s′ ∈ {L,R, ?} and v, v′ are initial

subwords of Iα(α). Applying the shift σt+1 yields v = (σt+1g|t′)s′v′. This shows that σTv = v′

where T > 0. Since t′ ≤ N −Mα− 1, we have that |v′| ≥Mα, so the last equality contradicts

combinatorial semihyperbolicity.

With this lemma, we can now prove the existence of circular chains around x.

Lemma 3.3.7 (Existence of chains around x). There exists C > 0 such that the following

holds. For each x ∈ T and each N ≥ 0, either the hypotheses of Lemma 3.3.4 are satisfied,

or, there exists m finite words u(1), . . . , u(m) ∈ {L,R}∗ such that
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• m ≤ 2Mα

• The lengths of the words satisfy N −Mα ≤ |u(i)| ≤ N

• The leaves li := ũ(i){∗1, ∗2} form a C2−N -circular chain around x in the sense of

Definition 3.3.5.

Proof. Suppose x ∈ T and N ≥ 0. Let g = Iα(x) be the itinerary of x. There are four cases

to consider.

1. g = u ? Iα(α) for some finite word u ∈ {L,R}∗, and |u| ≥ N −Mα.

2. The symbol ? does not occur in g, and if u is a word such that |u| ≤ N − 1 and

g|N = usIα(α)|N for some s ∈ {L,R}, then |u| ≥ N −Mα.

3. The symbol ? does not occur in g|N , and there exists a word u such that g|N = usIα(α)|N
for some s ∈ {L,R}, and |u| < N −Mα.

4. g = u ? Iα(α) for some finite word u ∈ {L,R}∗, and |u| < N −Mα.

In case 1), the hypothesis of Lemma 3.3.4 are satisfied, so there is nothing to prove. Now we

turn to the second case. The desired leaves will be the boundary leaves of a certain cylinder

containing x. Let g|N ∈ {L,R}∞ be the first N letters in the itinerary of x. The cylinder

C(g|N ) is a union of open intervals with disjoint closure, with total length 2−N , that contains

x. By Proposition 3.2.12, the boundary leaves of the cylinder are of the form ũ(i){∗1, ∗2},

where u(i) are words such that g|N = u(i)sIα(α)|N . These boundary leaves clearly form a

circular chain around x. It remains to verify that these boundary leaves satisfy the first

conclusion of Lemma. Let m be the number of boundary leaves of the cylinder C(g|N). By

Lemma 3.3.6, m ≤Mα + 1.

The idea for case 3) is similar. We would like to use the boundary leaves of C(g|N), but

the problem is that not all the boundary leaves are deep enough: if (uj) denotes the initial
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subwords of g for which g = ujsI
α(α), there exists j′ such that |uj′| < N −Mα. See Figure

3.3d. However, Lemma 3.3.6 guarantees that there can only be one j′ for which this holds. It

suffices to find another cylinder C(ĝ|N) such that C(ĝ|N) and C(g|N) share the troublesome

shallow boundary leaf ũj′{∗1, ∗2}. The boundary leaves of the closed union C(g|N) ∪ C(ĝ|N)

will all be deep since the shallow leaf is in the interior and is no longer on the boundary, and

we can use these boundary leaves as the leaves in our circular chain.

If g|N = uj′sI
α(α)|N , let ĝ = uj′ ŝI

α(α)|N where ŝ = L if s = R and vice versa. Then

C(ĝ) is a cylinder that also has ũj′{∗1, ∗2} as a boundary leaf. This completes the proof for

case 3).

For case 4), we consider the modified itinerary gL which is equal to g = Iα(x) except that

the symbol ? is replaced by the symbol L. The modified itinerary gL = uLIα(α) satisfies the

hypotheses of case 3) with t = |u|, and C(gL|N) contains x by Proposition 3.2.11, so we can

apply the construction of case 3) to gL to obtained the desired circular chain.

The existence of these circular chains allows us to pullback the gluings around the main

leaf to create gluings on all scales.

Proof of Theorem 3.1.5. Suppose x ∈ T and N ≥ 0. Let g = Iα(x) be the itinerary of x. If

the hypotheses of Lemma 3.3.4 are satisfied, we are done. Otherwise, let u(1), . . . , u(m) be

the finite words provided by Lemma 3.3.7, so that the leaves lj := ũ(j){∗1, ∗2} form a circular

chain around x. Let U be the interior of this chain (see Definition 3.3.5).

For each j = 1, . . . ,m, the mapping ũ(j) maps the two intervals I ′, I ′′ (containing ∗1, ∗2)

to a pair of neighborhoods ũ(j)I ′ and ũ(j)I ′′. Here it is crucial that I ′ and I ′′ do not contain

any postcritical points.

By backward invariance of ∼ and linearity of the ũ, the pair of good gluings between the

intervals I−j and I+
j constructed in Proposition 3.3.3 are mapped via ũ(j) to a pair of good

gluings adjacent to ũ(j)∗1 and ũ(j)∗2. One of the gluings will be in the interior U and the

other one will lie in the exterior T\U . We will use the gluing that lies in the exterior. The

derivative of ũ(j) is between 2−N and 2−N+Mα , so the gluing is at scale 2−N .
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The collection of these gluings for j = 1, . . . ,m show that r = 2−N is a L-qs-good scale at

x, where the constant L does not depend on x and N .

3.4 Combinatorial semihyperbolicity and concrete semihyperbolicity

So far in this chapter we have worked only with ‘abstract’ or ‘combinatorial’ laminations. In

this section we relate our work to concrete Julia sets by proving Theorem 3.1.6.

For c ∈ C let pc(z) = z2 + c and let Kc be its filled Julia set. If Kc is connected there is a

unique Riemann map ϕc : D∗ → C\Kc that fixes ∞ and ϕ′(∞) > 0. If, in addition, Kc is

locally connected, then ϕc extends continuously to the boundary ∂D ∼= T. Let γ : T→ Jc be

the restriction of this extension to the boundary, where Jc = ∂Kc is the Julia set of pc. We

call γ the Carathéodory loop. The Carathéodory loop induces an equivalence relation ∼c on

T ∼= R/Z where points are identified if they have the same image under γ.

Recall the semiconjugacy of Proposition 3.1.2:

pc ◦ γ = γ ◦ h. (3.11)

The semiconjugacy implies that ∼c is closed and invariant in the sense of Section 3.2.1.

Now suppose there exists α ∈ T that satisifies γ(α) = c, then ∗1 ∼c ∗2. We immediately get

that ∼c contains the minimal α-equivalence ∼α.

Recall from Section 3.1 that c ∈ C is a semihyperbolic parameter if pc has no parabolic

periodic points and if c is not in the closure of its forward orbit.

Our characterization of the topology of T/ ≈α in terms of itineraries shows that our

notion of combinatorial semihyperbolicity (Definition 3.2.5) is equivalent to the notion of

semihyperbolicity described above.

Proof of Theorem 3.1.6. For the first direction, suppose c is semihyperbolic and let α ∈ T be

a landing angle for c so that γ(α) = c. If htα = α, then by the semiconjugacy (3.11) we have

that ptc ◦ γ(α) = γ(α). Since c is not periodic, we conclude that α is not periodic.

From [8, Theorem 1] we get that ∼α=≈α and that T/ ≈α is homeomorphic to Jc via the

map γ : T→ Jc. Since c is semihyperbolic we have c /∈
⋃
t≥1 p

t
c(c) in T/ ≈α (Theorem 3.1.4).
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The semiconjugacy (3.11) implies that [α] /∈
⋃
t≥1 h

t([α]). It follows from the characterization

of the topology of T/ ≈α in Proposition 3.2.7 that α is combinatorially semihyperbolic.

For the other direction, if α is combinatorially semihyperbolic, then our construction

Theorem 3.1.5 together with Theorem 2.5.3 implies that there exists a conformally removable

compact set J ⊂ Ĉ such that conformal map ϕ : Ĉ\D → Ĉ\J solves the welding problem

≈α, meaning ϕ(e2πix)) = ϕ(e2πiy)) ⇐⇒ x ≈α y. Suppose we chosen J so that ϕ satisfies

the normalizations ϕ(e2πi∗1) = 0, ϕ(∞) =∞, and ϕ(z) = z +O(1) as z →∞. The x 7→ −x

symmetry of ≈α implies that ϕ is odd, so actually ϕ(z) = z + o(1).

We will show that J is the Julia set of z 7→ z2 + c, where c = ϕ(e2πiα).

Let h̃(z) = z2 be the extension of the angle doubling map to the exterior of the unit disk,

h̃ : Ĉ\D → Ĉ\D, and let p = ϕ ◦ h̃ ◦ ϕ−1 be its conjugate on Ĉ\J . Then p is holomorphic

on Ĉ\J , and backward invariance of ≈α implies that p extends continuously to Ĉ to a

topological degree two branched cover with two critical values, at ∞ and at c = ϕ(e2πiα).

The normalization of ϕ implies that p(z) = z2 +O(1) as z →∞.

We would like to conclude from removability of J that p is holomorphic on Ĉ and is hence

a polynomial. However, p is not a homeomorphism so we cannot apply conformal removability

directly. Instead, we will consider a lift of p.

Consider the map pc(z) = z2 + c where c = ϕ(e2πiα). It is a double sheeted cover of

C\{c} by C\{0}. On the other hand, p : C\{0} → C\{c} is also a double sheeted cover.

Let π be a homeomorphism π : C\{0} → C\{0} such that p = pc ◦ π. Note that if B ⊂ C

is a ball around 0, then p−1
c (p(B)) is also a ball around 0. Therefore we can extend π to a

homeomorphism C→ C by defining π(0) = 0. Since p(z) = z2 +O(1) and pc(z) = z2 +O(1)

as z →∞, it follows that π(z) = z + o(1) as z →∞.

On the other hand, the holomorphicity of p on C\J , and the holomorphicity of pc, implies

that π is holomorphic on C\J . By removability of J we conclude that π : C → C is the

identity.

We have thus shown that pc = p and it is clear that J is the filled Julia set of p. We have

found a polynomial pc for which T/ ≈α∼= Jc. It remains to show that c is semihyperbolic.
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Since (we have just shown that) γ is a homeomorphism between (T/ ≈α, h) and (Jc, pc),

it suffices to show that [α] /∈
⋃
t≥1 h

t([α]). By Proposition 3.2.7, we need to show that for all

t ≥ 1, σtIα(α) is not (2Mα+1)-close to Iα(α). Suppose Iα(htα) and Iα(α) are 2Mα+1 close for

some t, then we can write Iα(α)|2Mα+1 = usIα(α)|2Mα+1 and Iα(htα)|2Mα+1 = us′Iα(α)|2Mα+1

for some finite word u ∈ {L,R}∗ and some s, s′ ∈ {L,R}. If |u| > Mα then this shows that

Iα(α)|Mα = u|Mα = kα(htα)|Mα , and this violates combinatorial semihyperbolicity of α. On

the other hand if |u| ≤Mα, then by applying the shift σ|u|+1 to the equality Iα(α)|2Mα+1 =

usIα(α)|2Mα+1 shows that Iα(h|u|+1α)|2Mα−|u| = Iα(α)|2Mα−|u|. Since 2Mα − |u| ≥ Mα, this

again violates combinatorial semihyperbolicity.
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Chapter 4

CONFORMAL WELDING OF THE CRT

In this chapter, we prove Theorems 1.3.1 and 1.3.2 on the welding of the Brownian

lamination and the scaling limit of large Shabat trees. Figure 1.4 shows the solution to the

welding problem for the lamination corresponding a regular tree of depth n = 11, where each

(half)-edge has the same harmonic measure with respect to infinity. It can be shown that

as n → ∞, the diameter of the middle edges stays bounded below. This implies that the

associated conformal welding maps fn cannot converge uniformly on D, as each edge is the

image of an arc of size 1
2
(3 · 2n − 3)−1 under fn. However, along subsequences, the fn do

converge locally uniformly to a conformal limit (we believe that the limit exists and that the

limit is a conformal map onto a Jordan domain). An easier example of the same phenomenon

is the conformal map z 7→ (zn + z−n + 2)1/n onto the complement of a star with n edges;

these map clearly do not converge uniformly on D, however they converge locally uniformly

to the identity on D∗.

These examples illustrate the main difficulty in the proof of 1.3.2. To deal with this, we

will show that the Brownian lamination satisfies the good scales condition of Theorem 2.5.3

(although it does not satisfy the qs-good scale condition).

The strategy is to construct candidate annuli Al (for l = 1, 2, . . . ) in terms of ωl where,

roughly speaking, ωl is the part of the excursion S lying between height λl and λl+1. The

conditions of Theorem 2.5.1 that ensure the nondegeneracy of Al translate into five simple

conditions Good1,2,3,4,5 on ωl, see Section 4.1.2, and its discrete counterpart, Section 4.2.3.

We will define ωl in such a way (see Sections 4.1.2 and 4.3.1) that (ωl)l≥1 is a Markov chain.

This allows us to use the standard large deviations framework (Theorem B.0.3) to show that,

with very high probability, the density of the set of indices l for which ωl ∈ Good1,2,3,4,5 is
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greater than 1
2
.

The crux of the proof is a long computation (Lemma 4.3.4) showing that a certain function

on the state space decreases sharply in expectation when the Markov chain transitions from

a state that is not in Good1,2,3,4,5.

Section 4.1 contains a sketch of a proof of Theorem 1.3.1 along these lines. However,

we will not give all the details because the same strategy also gives a proof of the stronger

Theorem 1.3.2, which we prove in detail in Section 4.2. For the convenience of the reader, we

give a self-contained presentation of the large deviations estimate that we need in Appendix

B. Some technical estimates for discrete random walks needed for Section 4.2 are collected in

Appendix A.

4.1 Proof sketch for Theorem 1.3.1

Fix a standard Brownian excursion e : [0, 1] → [0,∞). We would like to employ Theorem

2.5.3 and show that almost surely, for every x ∈ T and every n ≥ 1, at least half of the scales

2−1, 2−2, . . . , 2−n are good scales. By rotation invariance of the CRT, it suffices to consider

x = 0 and show that the probability of not having n/2 good scales decays exponentially faster

than 2−n.

4.1.1 Decomposition of Brownian excursion

The good chains at each scale will be obtained by considering a decomposition of e into

excursions away from Hl that reach height Hl+1, where essentially Hl = λl−n for some fixed

λ > 1 and 1 ≤ l ≤ n. For ease of notation, we fix j and write h1 = Hl, h2 = Hl+1 and so on

in our description of the decomposition below, see Figure 4.1.

Let X = {t : e(t) = h1}. Consider those connected components U of [0, 1]\X on which e

is an excursion that reaches level h2, that is e|U ≥ h1 and sup e|U ≥ h2. Suppose there are k

such components U1, ..., Uk (by continuity there are finitely many of these intervals). Then

there are k + 1 components Uk+1, ..., U2k+1 of the complement [0, 1] \
⋃
j Uj. Notice that
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Figure 4.1: The decomposition of a Brownian excursion with respect to heights h1 and h2.

Here, there are k = 2 excursions from height h1 to height h2, over the intervals U1 and U2.

The lengths of the intervals in this decomposition are given by the ai. The indexing is always

chosen so that a1 and a2 are the lengths of the intervals on the end, then a3, . . . , ak+1 are the

lengths of the intervals in between the excursion intervals, and finally ak+2, . . . , a2k+1 are the

lengths of the excursion intervals themselves.

• Conditioned on the leftmost interval, the law of e on that interval is that of a Brownian

meander conditioned on ending at h1 and staying below h2. Similarly, the conditional

law of e on the rightmost interval is that of a time-reversal of such a meander. (A

Brownian meander is a Brownian motion starting at 0 conditioned to be positive).

• On the Uj with 1 ≤ j ≤ k, the conditional law of e − h1 is that of an excursion

conditioned to reach height h2 − h1.

• On the remaining Uj, the conditional law of e is that of a Brownian bridge from h1 to

h1, conditioned to stay between 0 and h2.

If k ≥ 1, the lengths of the intervals Uj can be viewed as a (2k + 1)− dimensional vector

a = (a1, . . . , a2k+1). Re-label the indices so that

• a1 and a2 denote the lengths of the left- and rightmost interval.

• a3, . . . , ak+1 denotes the lengths of the k − 1 bridges, in left to right order.
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• ak+2, . . . , a2k+1 denotes the lengths of the k excursions, in left to right order.

It is possible to write down an explicit expression for the density of the random variable a,

see Proposition 4.2.2 below for the analog in the discrete setting.

Remark 4.1.1. Here are some intuitive statements about a. By Brownian scaling we may

assume h1 = 1 and h2 = λh1 for some fixed λ > 0. Let W > 0 be the length of the excursion

after this rescaling.

• If W is very small, then k = 0 with high probability.

• k has exponential tails, uniformly as W →∞.

• It is very unlikely for a Brownian bridge to stay in an interval of size h1 over a time

period much longer than h2
1. It follows that it is very unlikely for the lengths a3, . . . , ak+1

to be much longer than h2
1.

• For W/h2
1 � 1, it is likely that most of the mass of the interval [0,W ] goes to a single

ai: For example, it is much more likely that there is an ai with ai ≈ Wi than it is to

have ai and aj with ai ≈ aj ≈ W/2.

4.1.2 Constructing chains for the Brownian excursion

We now explain how the decomposition defined in the previous section can be used to

construct good chains (see Section 2.5 for definitions).

Fix N large and for l = 0, 1, 2, . . . consider the geometric sequence of scales H0 = 0 and

Hl+1 = Hl + λ−Nλl

so that

Hl+2 −Hl+1 = λ(Hl+1 −Hl).

Let e : [0, 1]→ [0,∞) be an excursion.



76

Fix a ‘scale’ h0 = Hl, h1 = Hl+1, h2 = Hl+2 and denote Hl+.5 = h1.5 the point in between

h1 and h2 satisfying
h2 − h1.5

h1.5 − h1

= Λ

where Λ is a large parameter that is determined later. Fix an excursion interval Uj ⊂ T,

1 ≤ j ≤ k, so that by our definition inf e|Uj = h1 and sup e|Uj ≥ h2. Let τ = τj = inf{t ∈

Uj : e|Uj(t) = h2} and τ̃ = sup{t ∈ Uj : e|Uj(t) = h2} be the first and last times respectively

that e|Uj visits h2. Let τ− = sup{t ∈ Uj : t < τ, e(t) = h1.5} be the last time that e|Uj visits

h1.5 before visiting h2. Let τ+ = inf{t ∈ Uj : t > τ̃ , e(t) = h1.5} be the first time that e|Uj
visits h1.5 after visiting h2 for the last time, see Figure 4.4 below.

The endpoints of Uj, call them θ− and θ+, are equivalent, so if τ− and τ+ are equivalent,

the pair of intervals C(l,j) := ([θ−, τ−], [τ+, θ+]) form a chain link. Define the chain C(l) as the

sequence of chain links C(l,j) for j = 1, . . . , k, see Figure 4.2.

The following conditions Good1,Good2, ...,Good5 are translations of the conditions of

Section 2.5, and they guarantee the desired lower bound on mod(Γ(C(l))). They all involve

the parameter L > 0, where larger L corresponds to less restrictive conditions. See Section

4.2.3 for the detailed definitions on these conditions in the discrete setting.

We say that S|Uj ∈ good1(h1, h2) if the restriction of the jth excursion to [τ−, τ+] does

not dip below height h1.5, so that τ− and τ+ are identified via ∼ (Figure 4.2), and we say

that S ∈ Good1(h1, h2) if S|Uj ∈ good1(h1, h2) holds for all 1 ≤ j ≤ kl.

If Good1 holds then by the discussion above, we get a well defined chain link C(l).

The remaining conditions Good2,3,4,5 ensure that this chain link satisfies the conditions of

Theorem 2.5.1.

• We say that S|Uj ∈ good2(h1, h2) if the diameters of the two intervals in the chain link

C(l,j) are comparable to h−2
1 , and we say that S ∈ Good2 if S|Uj ∈ Good1(h1, h2) for

all j = 1, . . . , k.

• We say that S|Uj ∈ good3(h1, h2) if the excursion is Hölder on the chain link intervals

of C(j). This corresponds to Condition 2 in Section 2.5.
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• We say that S ∈ Good3(h1, h2) if S|Uj ∈ good3(h1, h2) for all j = 1, . . . , k.

• The Good4 condition is satisfied if the total length of the non-excursion intervals is

comparable to h−2
1 . This, together with the Good1 condition, corresponds to Condition

1 in Section 2.5.

• The Good5 condition is satisfied if the number of excursion intervals is bounded by L,

that is k ≤ L. This corresponds to Condition 3 in Section 2.5.

Figure 4.2: Left: we have a Brownian excursion which has k = 3 excursions from h1 = λlh

to h2 = λl+1h. The rest of the excursion is irrelevant and not shown here. The conditions

Good1(l, j) are satisfied for j = 1, 2, 3, and the resulting chain links are highlighted on the

x-axis.

Every scale that satisfies the Good conditions gives rise to a good chain in Theorem 2.5.3.

Thus the proof of Theorem 1.3.1 reduces to showing that the Good conditions hold at many

scales l. If the scales were independent, it would suffice to estimate the probability that a

given scale satisfies the Good conditions. Since the scales are not independent, we have to

work a little harder. We analyze them via a discrete time Markov exploration process ωl,

where ωl consists of the following information:

• The excursion intervals Uj of e from Hl to Hl+1 (described in Section 4.1.1).
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• The excursion intervals Vi from Hl+1 to Hl+2

• The restriction of e to the Uj, modulo the restriction onto the Vi. In other words, we

keep track of what happens on the Uj , but we ‘forget’ what happens on the Vi intervals.

If e is distributed as a Brownian excursion, then the sequence (l, ωl)l≥0 is a Markov chain.

Some aspects of this Markov chain can be computed explicitly. For example, let a(ωl) denote

the sequence of lengths of the excursion intervals Vi above. This is also a Markov chain and

its transition probabilities can be computed explicitly. These transition probabilities will

respect the Brownian scaling. See the next section for the details in the discrete setting.

Each of the Goodi conditions can be identified with a certain subset of the state space of

this Markov chain, and the following large deviation estimate (proved in Appendix B) can be

applied.

Theorem 4.1.2. Let ωl be a Markov chain on state space Ω with transition densities π(x, dy).

Let A ⊂ Ω and suppose u : Ω→ [1,∞) is a function with

λ̃u(x) := log

(
u(x)∫

u(y)π(x, dy)

)
≥ 0. (4.1)

Then for each ε > 0,

P
(

1

n

∣∣{k : ωk ∈ A}
∣∣ ≥ ε

)
≤ Eu(ω1) exp

(
−nε inf

ω∈A
λ̃u(ω)

)
. (4.2)

It remains to construct a test function u such that (4.1) is satisfied and such that

infω/∈Good λ̃u(ω) is large. For the sake of exposition, we first describe how to create a test

function that gives us a bound for the Good5 condition.

In our exploration process, each excursion interval splits into multiple excursion intervals,

independently of the other excursion intervals. Generically, there will be one large excursion

interval which is sustained from level to level, and occasionally this excursion interval will

have a few child intervals of short length. These shorter excursion intervals will tend to not

have too many children (see Proposition 4.3.2), and so it is plausible that at most levels,
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the Good5 condition is satisfied. To understand the choice of test function, it is helpful to

use subcritical Galton-Watson branching with immigration as a simplified toy model of the

process. This is the sequence of random variables Z0, Z1, Z2, . . . where Z0 = 0 and

Zn+1 = 1 +
Zn∑
i=1

Ξi,

and the Ξi are i.i.d. random variables of mean strictly less than 1, supported on the

nonnegative integers. The immigrant (the 1+ term) plays the role of the large excursion

interval. The (Zi) form a Markov chain on the state space {0, 1, 2, . . . }. In this case, the test

function u(ω) := ζω for some appropriately chosen constant ζ > 1 can be used in Theorem

4.1.2 to get large deviations upper bounds on the density of generations for which Zn is large.

Indeed, the fact that each node has its children independently allows the exponent in the

right hand side of (4.2) to be bounded.

One aspect in which the Markov chain on Brownian excursions differs from the simplified

toy model is that the ‘nodes’ in the Brownian excursion exploration process are themselves

Brownian excursions. In particular, they have different lengths, which affects their offspring

distribution.

This can be modeled by a multi-type Galton-Watson process: each ‘type’ has its own

offspring distribution (which not only contains information about the number of offspring,

but also the type of offspring). In this setting, the test function has to take into account the

different types: u(Zn) =
∏Zn

i=1 ζ(Type(Zi)) where ζ is now a real valued function of types.

For the exploration process of excursion intervals, the ‘type’ of the excursion interval is

the (Brownian scaled) length β > 0 of the excursion interval, and it turns out (c.f. Lemma

4.3.5) that ζ(β) = 2 + β1/4 works.

That is, if λ > 1 is sufficiently large, then it can be shown that the following test function

u = V satisfies (4.1)

V (l, ω) =
2k+1∏
i=k+2

(2 + (aig
−2
l )1/4),
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where gl = Hl+2−Hl+1 and the ai are the lengths of the excursion intervals from Hl+1 to Hl+2.

Note that the state space of our markov chain is the space of pairs (l, ω). Furthermore, if

A = {ω : ω has more than L excursion intervals} (i.e. the complement of the Good5 states),

then by choosing L sufficiently large, we can make infω∈A λ̃u(ω) arbitrarily large.

Now we write down the more complicated test function that can be used to get large

deviations for all the Good1,2,3,4,5 conditions. Calculation shows that for suitable parameters

q, λ > 1 large, and s > 1, W0 > 0 small, the following function has the desired properties:

V (l, ω) = sg
−2
l −

∑kl
i=1 αi

kl∏
i=1

q1(αi≤W0)(2 + α
1/4
i )1/2

kl−1∏
j=1

q1(S|Uj /∈good1,2,3(Hl,Hl+1), (4.3)

where for i = 1, . . . , k, the αi = a(ωl)i+k+1g
−2
l are the scaled lengths of the excursions intervals

from Hl+1 to Hl+2.

This definition depends on several different parameters, some of which have already been

introduced. We summarize them here for the reader’s convenience. All these constants except

for s and W0 will be taken to be ‘large’.

1. q > 1 is a penalty factor for violating the good1,2,3 condition and also a penalty for any

excursion intervals that are too short. It will turn out that we need to take q � λ20.

2. L > 1 is a parameter that determines how restrictive the Good1,2,3,4,5 conditions are.

3. W0 > 0 is a parameter that determines what constitutes a ‘short’ excursion interval. We

need to penalize short excursion intervals so that we can ensure the good1,2,3 conditions

are satisfied (see the hypotheses of Proposition 4.3.3).

4. s > 1 is a penalty factor for violating the Good4 condition.

5. λ ≥ 2 is the step size for the Markov exploration process.

6. Λ ≥ 2 determines the relative distances between Hl, Hl+0.5, and Hl+1. Changing this

parameter affects the definition of the good1,2,3 conditions.
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In (4.3), the factor sg
−2
l −

∑kl
i=1 αi penalizes states for which much of the interval [0, 1] is

taken up by non-excursion-intervals. Whenever the Good4 condition is violated, this factor is

large. However, this tends to decrease under iteration of the Markov chain due to the extra

factor of λ−2 from rescaling.

Using the explicit equations for the transition probabilities of the Markov chain, it can

be shown that the test function (4.3) has the desired properties. We will not present the

proof here. Instead, we will prove the analogous result (Lemma 4.3.4) for the discrete

approximations to the Brownian excursion.

4.2 The exploration process for large finite trees

In this section we present the details of the proof of Theorem 1.3.2, following the strategy

of the proof of Theorem 1.3.1 outlined in the previous section. As Theorem 1.3.2 implies

Theorem 1.3.1, this also concludes a detailed proof of Theorem 1.3.1. Before adopting the

decomposition described in Section 4.1.1 to the setting of random walks, we collect some

notation and terminology.

4.2.1 Notation and terminology

A (Bernoulli) walk of length n is a map S : {0, . . . , n} → Z such that Si+1− Si ∈ {−1, 1} for

i ≥ 1. For the rest of this paper we will assume that Bernoulli walks are defined on the whole

interval [0, n] by requiring that the walk is linear of slope 1 in between the integer points.

For a ∈ Z denote Wn(a) denote the collection of walks of length n with S0 = a. Let

Wn(a→ b) ⊂Wn(a) denote the set of walks S with Sn = b, so that |Wn(a)| = 2n and

|Wn(a→ b)| =
(

n

n/2− (b− a)/2

)
. (4.4)

For this formula to be true when n is odd, we abide by the convention that binomial coefficients

with noninteger arguments are equal to zero.

Let En(a) ⊂ Wn(a → a) denote the collection of excursions away from a of length n,

namely walks with S0 = Sn = a, and Si ≥ a for all i. Note that En(0) is the collection of
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Dyck paths of length n, and recall that |En(0)| is given by the Catalan number 1
n/2+1

(
n
n/2

)
(this can be deduced by taking a = n+ 1 and g = 1 in Corollary A.0.2).

Fix an excursion S from 0. As in the previous section, we will consider the excursions of

S away from h1 that exceed level h2, where 0 = h0 < h1 < h2. As before, this naturally leads

us to consider the partition of [0, n] into disjoint (except for their endpoints) closed intervals,

where the restriction of S onto each part corresponds to one of the following three types:

• For n ≥ 2, let W↑
n(a → b) ⊂ Wn(a → b) denote the walks which ‘approach a and b

from below’, that is

W↑
n(a→ b) = {S ∈Wn(a→ b) : S1 = a− 1 and Sn−1 = b− 1}.

This definition is needed to guarantee uniqueness of the decomposition, Proposition

4.2.2.

Note the natural bijection W↑
n(a→ b) ∼= Wn−2(a−1→ b−1) which together with (4.4)

yields |W↑
n(a → b)| =

(
n−2

n/2−1−(b−a)/2

)
. For c < d, let W↑

n(a → b; c ≤ min < max ≤ d)

be the set of walks S in W↑
n(a→ b) for which c ≤ S ≤ d.

• Let Zn(a ↑ b) ⊂Wn(a→ b) denote the walks that stay above the left endpoint a and

‘approach the right from below’, that is

Zn(a ↑ b) = {S ∈Wn(a→ b) : S ≥ a and Sn−1 = b− 1}.

Similarly, let Zn(a ↓ b) ⊂ Wn(a → b) denote the walks that stay above the right

endpoint and ‘approach the left from below’, that is

Zn(a ↓ b) = {S ∈Wn(a→ b) : S ≥ b and S1 = a− 1}.

Notice that there is a natural bijection Zn(a ↑ b) ∼= Zn(b ↓ a) by time reversal. Corollary

A.0.2 shows that |Zw(a ↑ b)| = b−a
w

(
w

w
2

+ b−a
2

)
.

• For b > a, let En(a; max ≥ b) be the collection of excursions in En(a) with maximum

greater than or equal to b.
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We will often need to consider the uniform probability measure on these spaces of walks.

We will use a subscript to denote the probability measure in question, and the variable S to

denote the random variable; for instance PWn(a→b)(S ∈ ·) denotes the uniform probability

distribution on Wn(a→ b). Thus for A ⊂Wn(a→ b) we have PWn(a→b)(S ∈ A) = |A|
|Wn(a→b)| .

In what follows, we will frequently deal with walks and excursions that are defined on

intervals I = [u, v] instead of on [0, n]. Therefore it will be convenient to use the notation

WI ,EI , and so on, with the obvious meaning. If there is no subscript, the union over all

intervals (with integer endpoints) is taken. For example, W(a) =
⋃
I WI(a).

4.2.2 Excursion decomposition of Dyck paths

We begin by illustrating the decomposition with an example. The description of the decom-

position in general follows later. Let n = 28, h1 = 2 and h2 = 4. Consider the walk

S =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0 1 2 1 2 3 2 1 2 3 4 5 4 3 2 3 2 1 2 3 2 1 2 3 4 3 2 1 0


where S ∈ E28(0→ 0). For each column in the above table, the bottom entry is the value of

S at the time given in the top entry. See Figure 4.3.

We can write S as the following concatenation of walks:

S = B1A1B2A2B3

where

B1 =

0 1 2 3 4 5 6 7 8

0 1 2 1 2 3 2 1 2

 , A1 =

8 9 10 11 12 13 14 15 16

2 3 4 5 4 3 2 3 2

 , B2 =

16 17 18 19 20 21 22

2 1 2 3 2 1 2


A2 =

22 23 24 25 26

2 3 4 3 2

 , B3 =

26 27 28

2 1 0

 .
The key point here is that B1 ∈ Z(0 ↑ h1,maxS < h2), B2 ∈W↑(h1 → h1, 0 ≤ min < max <

h2), and A1, A2 ∈ E(h1 → h1,max ≥ h2) and B3 ∈ Z(h1 ↓ 0,maxS < h2). The decomposi-

tion S = B1A1B2A2B3 naturally induces the desired partition {[0, 8], [8, 16], [16, 22], [22, 26], [26, 28]}

of [0, 28].
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Figure 4.3: An excursion in E28(0 → h1) and its decomposition into concatenations of 5

smaller excursions and bridge walks. Here h1 = 2, h2 = 4 and n = 28. The first and last

walks in this decomposition are walks of type Z(0 ↑ h1,max < h2) and Z(h1 ↓ 0,max < h2)

respectively. The second and fourth walks are of type E(h1 → h1,max ≥ h2). The third walk

is of type W↑
n(h1 → h1, 0 ≤ min < max < h2).

In general, fix integers h2 > h1 > h0 = 0 and suppose S ∈ En(0,max ≥ h2) is an excursion

that reaches level h2. Let k = k(S) ≥ 1 be the number of excursions away from h1 that reach

level h2. Then we can decompose S into a concatenation of walks

S = Z1E1B1E2B2 · · ·Bk−1EkZ2

where

• Z1 ∈ Z(0 ↑ h1,max < h2) and Z2 ∈ Z(h1 ↓ 0,max < h2)

• For i = 1, . . . , k − 1, Bi ∈W↑(h1 → h1, 0 ≤ min < max < h2).

• For i = 1, . . . , k, Ei ∈ E(h1,max ≥ h2).

Definition 4.2.1. We will refer to the walks in the decomposition as [0 ↑ h1 ↑ h2]-ends,

[0 ↑ h1 ↑ h2]-bridges and [0 ↑ h1 ↑ h2]-excursions (which we often abbreviate as [h1 ↑ h2]-

excursions), respectively, of S. We will also call the intervals in this decomposition the

[0 ↑ h1 ↑ h2]-end intervals of S and so on. We denote a(S) = a[0↑h1↑h2](S) = (a1, . . . , a2k+1) ∈
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Z2k+1
≥0 the vector of lengths of the intervals in this decomposition, and will always choose the

indexing of the ai as in Section 4.1.1:

• a1 and a2 are the lengths of the [0 ↑ h1 ↑ h2]-end intervals.

• a3, . . . , ak+1 are the lengths of the [0 ↑ h1 ↑ h2]-bridge intervals, in left to right order.

• ak+2, . . . , a2k+1 are the lengths of the [0 ↑ h1 ↑ h2]-excursion intervals, in left to right

order.

Similarly, we define the [H1 ↑ H2 ↑ H3]-decomposition of a walk S by translation as the

[0 ↑ H2 −H1 ↑ H3 −H1]-decomposition of S −H1, and we often abbreviate [H1 ↑ H2 ↑ H3]-

excursion intervals to [H2 ↑ H3]-excursion intervals.

The indexing of the ai above is consistent with the notation in the following simple

consequence of the uniqueness of the above decomposition:

Proposition 4.2.2. Fix integers h2 > h1 > a and n ≥ 2. There is a bijection

En(0) ∼= En(0,max < h2)t (4.5)

t
∞⊔
k=1

⊔
a1+···+a2k+1=n

Za1(0 ↑ h1,max < h2)× Za2(h1 ↓ 0,max < h2)×

×
k+1∏
i=3

W↑
ai

(h1 → h1, 0 ≤ min < max < h2)

×
2k+1∏
i=k+2

Eai(h1,max ≥ h2),

where the second disjoint union is taken over positive integers ai ≥ 0.

4.2.3 Chains and conditions for large modulus

In this section we show how the decomposition introduced in the previous Section 4.2.2

naturally leads to chains in the sense of Section 2.5. We then identify several conditions that
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the decomposition at a given level must satisfy for the corresponding chain to be good. In

the subsequent sections we will show that these conditions are satisfied at many scales.

Fix 0 < h1 < h2 integer. Let S ∈ En(0,max ≥ h2) be an excursion that reaches height h2.

Let U1, . . . , Uk be the [0 ↑ h1 ↑ h2]-excursion intervals of S so that all S|Uj ∈ E(h1,max ≥ h2).

We now describe these various conditions as subsets of E(h1), denoted by Goodi(h1, h2)

where 1 ≤ i ≤ 5. They involve a parameter L > 1 where larger choices of L make the

conditions less restrictive. In what follows, let Λ > 1 be an integer and let

h1.5 = h1 + b(h2 − h1)/Λc.

The first three conditions are regularity conditions that each of the [h1 ↑ h2]-excursions

have to satisfy individually, S ∈ Good1,2,3(h1, h2) if and only if for all j, S|Uj − h1 ∈

good1,2,3(h1.5 − h1, h2 − h1).

The good1,2,3(g′, g) condition on excursions T from 0 that exceed g are defined below in

terms of their [0 ↑ g′ ↑ g]-decomposition.

The first condition T ∈ good1(g
′, g) is that T has only one [g′ ↑ g]-excursion. That is,

T only makes a single excursion away from g′ that reaches g. If this condition holds then

we define a chain link (recall Section 2.5) as the pair of left and right [g′ ↑ g]-end intervals

J−j = [θ−, τ−] and J+
j = [θ+, τ+] of T . Notice that S|Uj − h1 ∈ good1(h1.5 − h1, h2 − h1)

implies τ− ∼ θ+, while θ− ∼ τ+ always holds. See Figure 4.4.

If S ∈ Good1(h1, h2), then the corresponding collection of chain links {(J−j , J+
j )}ki=1 forms

a chain of degree k around 0. We call this the (h1, h2)-chain associated to S.

Next, we say that T ∈ good2(g
′, g) if aig

′−2 ∈ [L−1, L] for i = 1, 2, where a1, a2 are the

lengths of the [0 ↑ g′ ↑ g]-end intervals of T . This condition controls the diameters of the

chain link associated to T .

We say that T ∈ good3(g′, g) if eZ1 and eZ2 are (L, 1/3)-Hölder continuous on [0, 1]. Here

eZi(t) := a
−1/2
i Zi(ait) (4.6)

are the Brownian rescalings of the [0 ↑ g′ ↑ g]-end intervals of T . This condition gives control

over the regularity of the welding on the chain link associated to T .
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Figure 4.4: Definition of the good1(h1.5 − h1, h2 − h1) condition. We have highlighted the

excursion S over its j−th excursion interval Uj. τ and τ̃ are the first and last hitting times

in Uj of height h2. τ
− is the last hitting time of g′ in Uj before hitting h2, and τ+ is the

first hitting time of g′ after τ̃ . We say that good1(h1.5 − h1, h2 − h1) holds for S|Uj − h1 if

the portion of the excursion between τ and τ̃ does not dip below height h1.5 − h1, so that τ−

and τ+ are identified via ∼. If this holds, then the pair ([θ−, τ−], [τ+, θ+]) is a chain link as

defined in Section 2.5.
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The remaining conditions depends on all the excursion intervals (S|Uj )kj=1 at a given scale,

simultaneously.

We say that Good4(h1, h2) holds for S if n− w1 − · · · − wk ≤ Lh2
1, where w1, . . . , wk are

the lengths of the [h1 ↑ h2]-excursion intervals, and Good5(h1, h2) holds if the number k of

[h1 ↑ h2]-excursion intervals of S is less than L. Finally we say that Good5̃(h1, h2) holds if

Good5(h1, h2) holds and there is at least one [h1 ↑ h2]-excursion interval.

This gives a bound on the degree on the (h1, h2)-chain and also the sum (and hence

maximum) of the gaps between the chain links.

If all of the conditions are satisfied, we say that S ∈ Good(h1, h2). Summarizing the

discussion above:

Definition 4.2.3. Fix L,Λ > 1 and 0 < h1 < h2 integer, with h2 − h1 ≥ Λ. Let S be an

excursion in En(0) and let Uj be the [0 ↑ h1 ↑ h2]-excursion intervals of S. We say that

S belongs to Good(h1, h2) if S|Uj − h1 ∈ goodi(h1.5 − h1, h2 − h1) for each 1 ≤ j ≤ k and

1 ≤ i ≤ 3, and if Good4(h1, h2) and Good5̃(h1, h2) holds.

Proposition 4.2.4. Suppose h2 ≥ 2h1. If an excursion S belongs to Good(h1, h2), then the

curve family Γ(C) of the (h1, h2)-chain C associated to S satisfies

mod (Γ(C)) ≥ δ0

where δ0 > 0 depends only on L and Λ.

Proof. We would like to apply Theorem 2.5.1 and need to verify Conditions 1-3.

First, Good2 implies |J+
j | �L2 |J−j+1| and Good4 implies |τ−j+1 − θ+

j | .L,Λ |J+
j | so that

(2.12) and therefore Condition 1 holds.

Second, Condition 2 follows from Good3 and (the proof of) Lemma 2.4.6.

And third, the existence of the chain itself and the boundedness of the degree, Condition

3, is implied by Good1 and Good5̃.
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4.3 The main estimate and setup: Positive density of good scales

We now formulate the main estimate for the probability that a fixed percentage of scales are

good. Fix λ,Λ ≥ 2 integer and and consider the sequence of scales H0 = 0 and Hl+1 = Hl+λl.

Let Hl+0.5 = Hl + bHl+1−Hl
Λ
c, for sufficiently large l this will be strictly between Hl and Hl+1.

Consider an excursion S of length n, fix 0 < r < 1 small and consider the ball of radius r

centered at the root in the rescaled tree metric d = dS(n·)/n
1/2 (see (1.2)). We wish to show

that it can be separated from a circle of fixed radius by & log 1
r

annuli of modulus & 1 with

probability 1−O(rT0), where any T0 > 2 suffices for our purpose. More precisely, define ρ

such that Hρ−1 < r
√
n ≤ Hρ and define N ≥ ρ such that HN−1 < r1/2

√
n ≤ HN . Notice that

1

2
logλ

1

r
− 2 ≤ N − ρ < 1

2
logλ

1

r
+ 2. (4.7)

Then many of the associated (Hl, Hl+1)-chains satisfy the Good conditions and therefore the

assumption of Proposition 4.2.4:

Proposition 4.3.1. There are integers λ,Λ, L > 1 and r0 > 0 such that for all n for which

r ≤ r0, we have

P
( |{l = ρ, . . . , N : S ∈ Good1,2,3,4,5̃(Hl, Hl+1)}|+ 1

N − ρ
<

1

2

)
≤ Cλr

2.25,

where S is a uniformly random excursion in En(0) and the constant Cλ only depends on λ.

Proposition 4.3.1 follows from a large deviations estimate applied to a Markov chain ωl

and a suitable test function V that we will define in the next section. In the remainder of this

section, we prove that each individual [Hl ↑ Hl+1]−excursion satisfies the good1,2,3 conditions

with probability arbitrarily close to 1 if the parameters are chosen appropriately. We begin

with a geometric upper bound on the number of large excursions inside a given excursion. It

immediately implies that, at a fixed scale, the Good5 condition holds with high probability,

and later also provides us with control over the Markov chain exploration.



90

Lemma 4.3.2. Let g > 1 and λ > 1 be integers. Let S be a uniformly random excursion

of type Ew(0,max ≥ g). Let k be the number of [g ↑ λg]-excursions of S. There exists

pλ,wg−2 , p̃λ,wg−2 < 1 such that

P(k ≥ m) ≤ p̃m−1
λ pλ,wg−2

for m ≥ 1. Moreover, we can choose pλ,wg−2 and p̃λ in such a way that

1. pλ,wg−2 . exp
(
−c0

(λ−1)2g2

w

)
2. p̃λ,wg−2 . exp

(
−c0

(λ−1)2g2

w

)
3. p̃λ,wg−2 → 0 uniformly in wg−2 as λ→∞.

Here c0 is a universal constant and the first two statements are primarily useful when

wg−2 is bounded.

Proof. Let τ− and τ+ be the first and last times respectively that S is at level g. Conditioned

on τ−, τ+, the walk S|[τ−,τ+] is, up to translation of the domain, a uniform walk of type

WT (g → g,min ≥ 0), where T = τ+ − τ−. We have k ≥ 1 if and only if this latter walk

reaches level λg. By Lemma A.1.3, this probability is bounded by a quantity pλ,wg−2 which

has the desired properties.

This proves the statement of the lemma for m = 1. For the general case, it suffices to

prove the bound P(k ≥ m + 1|k ≥ m) ≤ p̃λ for m ≥ 1 and use induction. Suppose S is

conditioned on k ≥ m. Let U ⊂ [0, T ] be the mth excursion interval, and let τ− be the first

time that S hits λg in U . Let τ+ be the last time in [0, T ] that S hits λg. Conditioned

on τ−, τ+, the walk S|τ−,τ+ is (up to translation of the domain) a uniform walk of type

WT (λg → λg,min ≥ 0) where T = τ+ − τ−. We have k ≥ m + 1 if and only if this latter

walk hits level g. Thus item 2) follows from Lemma A.1.3, and item 3) follows from Lemma

A.1.2.

Now we are ready to estimate the probability of the good1,2,3− conditions of a single

excursion at a fixed level. Let g, L,Λ > 0 be integers and let g′ = bg/Λc.
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Proposition 4.3.3. For any W0 > 0, ε > 0, there exists Λ0 > 0 such that the probability

that a uniformly random excursion from 0 of length w > W0g
2 satisfies the good conditions

good1,2,3(g′, g) is bounded below by 1− ε when Λ ≥ Λ0 and L ≥ L0(Λ).

Proof. Fix ε > 0 and note that Lemma 4.3.2 implies P(S /∈ good1(g′, g)) ≤ ε for sufficiently

large Λ. Next, recall the condition good2(g′, g), which says that aig
′−2 ∈ [L−1, L], where a1, a2

are the lengths of the [g′ ↑ g]-end intervals respectively. First we bound the probability p that

a1g
′−2 /∈ [L−1, L]. Notice that if S ∈ Ew(0,max ≥ g), the part of S after its first [g′ ↑ g]-end

interval may be decomposed uniquely into the concatenation of a walk of type E(g′,max ≥ g)

and a walk of type Z(g′ ↓ 0). So, by Corollary A.0.2 and Proposition A.1.1,

p =
1

Ew(0,max ≥ g)

∑
a1+b+c=w

a1g′−2 /∈[L−1,L]

|Za1(0 ↑ g′,max < g)| · |Eb(g
′,max ≥ g)| · |Zc(g

′ ↓ 0)|

≤ 1

Cstirw−3/2cW0

∑
a1+b+c=w

a1g′−2 /∈[L−1,L]

|Za1(0 ↑ g′,max < g)|2−a1

· |Eb(0,max ≥ (Λ− 1)g′)|2−b · |Zc(g
′ ↓ 0)|2−c.

Using the estimates from Proposition A.1.1, Lemma A.2.2, and Corollary A.0.2, we get

p .W0 w
3/2

∑
a1+b+c=w

a1g′−2 /∈[L−1,L]

g′a
−3/2
1 e

− g′2
3a1 e

−c0 a1
g2 · b−3/2e−c0

(Λ−1)2g′2
b · g′c−3/2e−

g′2
3c

for some universal constant c0. Now if a1 + b+ c = w then either a1 ≥ w/3, or b ≥ w/3, or

c ≥ w/3, so the sum above can be bounded by splitting the region of summation over those

three regions: we have

p . w3/2(Ia + Ib + Ic) (4.8)
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where, for fixed ε > 0 and sufficiently large L,

Ia =
∑

a1+b+c=w
a1g′−2 /∈[L−1,L]

a1≥w/3

g′a
−3/2
1 e

− g′2
3a1 e

−c0 a1
g2 · b−3/2e−c0

(Λ−1)2g′2
b · g′c−3/2e−

g′2
3c

≤ sup
a1≥w/3

a1g′−2 /∈[L−1,L]

a
−3/2
1 e

− g′2
3a1 e

−c0 a1
g2

∑
a1+b+c=w

a1g′−2 /∈[L−1,L]
a1≥w/3

g′ · b−3/2e−c0
(Λ−1)2g′2

b · g′c−3/2e−
g′2
3c

≤ (w/3)−3/2ε
∑
b,c≤w

g′ · b−3/2e−c0
(Λ−1)2g′2

b · g′c−3/2e−
g′2
3c

≤ (w/3)−3/2ε ·
∫ ∞

1

x−3/2e−c0
(Λ−1)2

x dx ·
∫ ∞

1

x−3/2e−
1
3xdx

≤ (w/3)−3/2 · ε · C0.

Similarly, for fixed ε > 0 and fixed Λ > 1, and sufficiently large L ,

Ib =
∑

a1+b+c=w
a1g′−2 /∈[L−1,L]

b≥w/3

g′a
−3/2
1 e

− g′2
3a1 e

−c0 a1
g2 · b−3/2e−c0

(Λ−1)2g′2
b · g′c−3/2e−

g′2
3c

≤ sup
b≥w/3

b−3/2e−c0
(Λ−1)2g′2

b

∑
a1,c≤w

a1g′−2 /∈[L−1,L]

g′a
−3/2
1 e

− g′2
3a1 e

−c0 a1
g2 · g′c−3/2e−

g′2
3c

≤ (w/3)−3/2 ·
∫

[1,∞)\[L−1,L]

x−3/2e−
1
2x e
−c0x· g

′2

g2 dx ·
∫ ∞

1

x−3/2e−
1
2xdx

≤ (w/3)−3/2 ·
∫

[1,∞)\[L−1,L]

x−3/2e−
1
2x e−c0x·

1
2Λdx ·

∫ ∞
1

x−3/2e−
1
2xdx

≤ (w/3)−3/2 · ε · C0.

A similar argument gives Ic ≤ (w/3)−3/2 · ε ·C0. Using these estimates in (4.8) gives, for fixed

ε > 0 and fixed Λ > 1, and sufficiently large L, p ≤ ε. By the union bound, the probability

that good2(g′, g) does not hold is bounded by 2p ≤ 2ε.

Finally, we have from Lemma A.0.4 that P(S ∈ good3|S ∈ good2) ≥ 1− ε for sufficiently

large L. Hence P(S ∈ good2 ∩ good3) ≥ (1− Cε) · (1− ε). By the union bound, we get (for
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fixed ε, for sufficiently large Λ and L),

P(S ∈ Bad) ≤ P(S /∈ good1) + P(S /∈ good2 ∩ good3) . ε

and the proposition follows.

4.3.1 The Markov chain exploration

The key observation is that a uniformly random S ∈ En(0) may be explored via a Markov

chain on a state space Ω consisting of finite tuples of quotient excursions. These are

equivalence classes of walks defined via the following equivalence relation on excursions

Ew(Hl,max ≥ Hl+1): Declare two such excursions S, S ′ equivalent if they have the same

[Hl+1 ↑ Hl+2]-excursion intervals and they are equal on the complement of these excursion

intervals. In particular, if S, S ′ do not reach height Hl+2 then they are equivalent if and only

if they are equal. Denote the equivalence class of S by [S].

Recall the excursion decomposition of Section 4.2.2 and in particular Definition 4.2.1.

Equivalence classes have well defined [Hl ↑ Hl+1 ↑ Hl+2]-ends and -bridges, and well defined

[Hl+1 ↑ Hl+2]-excursion intervals. In particular, the conditions Good1,2,3(Hl, Hl+1) are well

defined on quotient excursions.

If S ∈ En(0) and if U1, . . . , Uk are the [Hl ↑ Hl+1]-excursion-intervals of S, then set

ωl := ([S|U1 ], . . . , [S|Uk ])

so that (ωl)l≥1 is a Markov chain. To get ωl+1 from ωl,

• Let V1, . . . , Vm be the [Hl+1 ↑ Hl+2]-excursion intervals of ωl (this is the collection of

[Hl+1 ↑ Hl+2]-excursion intervals over the k quotient excursions in ωl).

• Independently sample uniformly random excursions in E|Vj |(Hl+1,max ≥ Hl+2).

• Take the equivalence classes of each of these random excursions.
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In particular, this shows that the distribution of ωl+1 given ωl is entirely determined by

the lengths of the [Hl+1 ↑ Hl+2]-excursion intervals of ωl. The transition probabilities of this

Markov chain can therefore be deduced from (4.5).

We will use the notation b = b(ωl) for the vector of the lengths of all the [Hl+1 ↑ Hl+2]-

excursion intervals, and denote kl = k(ωl) the total number of these intervals. Note that,

with this indexing, ωl consists of kl−1 quotient excursions. We will also write

gl = g(ωl) = Hl+2 −Hl+1

and

Gap(ωl) = n−
∑

βi

where the sum is over the components βi of b(ωl). Note that Gap(ωl−1) can also be determined

from ωl, because ωl contains the information about the [Hl ↑ Hl+1]-decomposition. Now we

define the test function for the large deviations estimate. Define V : Ω→ R+ by

V (ωl) = sGap(ωl)g
−2
l

kl∏
i=1

q1(βig
−2
l ≤W0)(2 + (βig

−2
l )1/4)1/2

kl−1∏
j=1

q1(S|Uj−Hl /∈good1,2,3(Hl+0.5−Hl,Hl+1−Hl)).

(4.9)

For the rest of the paper, we will abbreviate this last term to q1(S|Uj /∈good1,2,3). See the end of

Section 4.1 for some heuristic remarks about the function V .

It will be useful to write the test function in the form

V (ωl) = sGap(ωl−1)g−2
l

kl−1∏
i=1

vgl−1↑(λ+1)gl−1
(S|Ui −Hl)

1/2q1(S|Ui /∈good1,2,3). (4.10)

where vh1↑h2 : E(0,max ≥ h1)→ R+ is defined by

vh1↑h2(S) = s2(a1+···+ak+1)g−2
2k+1∏
j=k+2

(2 + (ajg
−2)1/4)q21(ajg

−2≤W0). (4.11)

Here a1, . . . , a2k+1 is the vector of lengths in the [0 ↑ h1 ↑ h2]-decomposition of S, and

g = h2 − h1. Note that vh1↑h2 is well defined on the quotient space of E(0,max ≥ h1)

described at the beginning of this section.
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We need to show that V satisfies the assumptions of Theorem B.0.3. The proof of the

following crucial Lemma will occupy the next section.

Lemma 4.3.4. Set q = λ20. For sufficiently large λ > 1 and sufficiently small s > 1, the

following holds. For sufficiently large L,Λ > 1, sufficiently small W0 > 0, we have

E[V (ωl+1)|ωl = ω]

V (ω)
≤ 1 for all ω ∈ Ω. (4.12)

If S /∈ Good1,2,3(Hl, Hl+1) or S /∈ Good4,5(Hl+1, Hl+2),

E[V (ωl+1)|ωl = ω]

V (ω)
< λ−20. (4.13)

Finally, for 0 < r < 1,

EV (ωρ) .λ r
−1/4. (4.14)

where ρ satisfies Hρ−1 < r
√
n ≤ Hρ.

Proof. Recall that ωl+1 is generated by the kl independent excursions T1, . . . , Tkl , where Ti is

uniformly randomly chosen from Eβi(Hl+1,max ≥ Hl+2). Using (4.9) for the denominator

and (4.10) for the numerator, we can write

E[V (ωl+1)|ωl = ω]

V (ω)
=

sGap(ωl)g
−2
l+1
∏kl

i=1 E
[
vgl↑(λ+1)gl(Ti)

1/2q1(Ti /∈good1,2,3)
]

sGap(ωl)g
−2
l

∏kl
i=1 q

1(βig−2≤W0)(2 + (βig
−2
l )1/4)1/2

∏kl−1

j=1 q
1(S|Uj /∈good1,2,3)

= s−Gap(ωl)(1−λ−2)g−2
l

(
kl∏
i=1

E
[
vgl↑(λ+1)gl(Ti)

1/2q1(Ti /∈good1,2,3)
]

q1(βig
−2
l ≤W0)(2 + (βig

−2
l )1/4)1/2

)
kl−1∏
j=1

q−1(S|Uj /∈good1,2,3),

where the expectations are with respect to independent, uniformly random Ti ∈ Eβi(0,max ≥

gl).

By the Cauchy-Schwarz inequality, each term in the middle product is bounded above by(
Evgl↑(λ+1)gl(Ti)

2 + (βig
−2
l )1/4

)1/2

·
(
Eq21(Ti /∈good1,2,3)

q21(βig
−2
l ≤W0)

)1/2

. (4.15)
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Set λ = λ0 + 1 where λ0 is the constant of Lemma 4.3.5, and set q = λ20, and W0 to be

the constant of Lemma 4.3.5. Choose s < sλ small enough that

s2g−2
ρ−1 · exp

(
−c0

1

H2
ρ

)
≤ 1. (4.16)

This last condition on s will only be used further below in the proof of (4.14).

For these parameters, we have from Lemma 4.3.5 that the first term in (4.15) is bounded

by
(

7
8

)1/2
.

Now we turn to the second term of (4.15). By Proposition 4.3.3 with ε = 0.01q−2 there is

a Λ > 0 such that for L ≥ L0(Λ) we have

Eq21(Ti /∈good1,2,3)

q21(βig
−2
l ≤W0)

≤ 1 + q2P(Ti /∈ good1,2,3|βig−2
l > W0) ≤ 1.01.

It follows that the product (4.15) is bounded by 0.95. Thus we get

E[V (ωl+1)|ωl = ω]

V (ω)
≤ s−Gap(ω)(1−λ−2)g−2

l 0.95kl
kl−1∏
j=1

q−1(S|Uj /∈good1,2,3). (4.17)

This immediately implies (4.12). Now suppose S|Uj /∈ good1,2,3 for some j, or S /∈ Good4,5(Hl+1, Hl+2).

In the latter case this implies that kl ≥ L or Gap(ωl)g
−2
l ≥ L. Then

E[V (ωl+1)|ωl = ω]

V (ω)
≤ max

(
s−L(1−λ−2), 0.95L,

1

q

)
and this last expression can be made to be smaller than λ−20 by taking L large. This proves

(4.13).

To prove the last inequality (4.14), we will show that

E[V (ωρ)] ≤ E[vHρ↑Hρ+1(S)]1/2 . (2 + (n/g2
ρ−1)1/4)1/2 ≤ Cλr

−1/4, (4.18)

where the last inequality is clear from the definition of ρ.

For the first inequality, let V ′(ωl) = V (ωl)
∏kl−1

j=1 q
−1(S|Uj /∈good1,2,3) and notice that V ′(ωl)

is b(ωl)-measurable. Recall that b(ωl) is the vector of lengths of the [Hl+1 ↑ Hl+2]-excursion

intervals. Thus

EV (ωρ) = E [E [V (ωρ)|b(ωρ−1)]] = E
[
E
[
V (ωρ)

V ′(ωρ−1)

∣∣∣∣b(ωρ−1)

]
V ′(ωρ−1)

]
≤ E[V ′(ωρ−1)],
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where the inequality is from (4.17), using the fact that conditioning on ωρ−1 is the same as

conditioning on b(ωρ−1), and the fact that s > 1. This last expectation is, by (4.9), equal to

E[V ′(ωρ−1)] = E

[
s(a1+···+ak+1)g−2

ρ−1

2k+1∏
i=k+2

q1(aig
−2
ρ−1≤W0)(2 + (aig

−2
ρ−1)1/4)1/2

]
= EvHρ↑Hρ+1(S)1/2 ≤ E[vHρ↑Hρ+1(S)]1/2,

where S is a uniformly random element of En(0) and the a1, . . . , a2k+1 are the lengths in

the [0 ↑ Hρ ↑ Hρ+1]-decomposition.

For the second inequality of (4.18), apply Lemma 4.3.5 with our choices of q and W0, and

µ = Hρ+1

Hρ
− 1 ∈ [λ0, λ0 + 1] to obtain

E[vHρ↑Hρ+1(S)|maxS ≥ Hρ] ≤
7

8
(2 + (ng−2

ρ−1)1/4).

On the other hand, we have by Proposition A.1.1 that P(maxS < Hρ) . exp(−c0
n
H2
ρ
), while

E[vHρ↑Hρ+1(S)|maxS < Hρ] = s2ng−2
ρ−1 . Thus by our choice of s, (4.16), we are done.

Now that we have proved that our test function V satisfies the hypotheses of Theorem

B.0.3, we can apply the theorem and prove that most of the scales are good.

Proof of Proposition 4.3.1. Choose the constants L,Λ, s, λ,W0 so that the conclusion of

Lemma 4.3.4 holds. Applying Theorem B.0.3 (with ε = 1
4
) to the Markov chain (ωl)l≥ρ and

the test function u(ωl) = V (ωl) yields

P
(
|{l = ρ, . . . , N : S ∈ Good1,2,3(Hl, Hl+1) and S ∈ Good4,5(Hl+1, Hl+2)}|

N − ρ
<

3

4

)
. r−1/4(λ−5)(N−ρ+1) ≤ r−1/4(λ−1r−1/2)−5 ≤ λ5r2.25.

Here we have used (4.7).

To improve the Good5 above into Good5̃, we use the union bound together with the

following observation. If kl = 0 for some l ≤ N then maxS ≤ HN+2. Thus if maxS > HN+2

then Good5(Hl, Hl+1) implies Good5̃(Hl, Hl+1). Now HN+2 < λ4r1/2
√
n, and by Proposition
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A.1.1, PEn(0)(maxS ≤ λ4r1/2
√
n) ≤ 3

2
exp

(
−c0

1
λ8r

)
which is bounded by r2.25 for r sufficiently

small.

We have shown that the proportion of scales l = ρ, . . . , N that do not satisfy Good1,2,3(Hl, Hl+1)

is bounded by 1/4, and likewise the proportion of scales that do not satisfy Good4,5̃(Hl, Hl+1)

is bounded by 1/4 + 1/(N − ρ). The statement of the proposition follows.

4.3.2 Proof of bound for v

Recall the definition of v in (4.11).

Lemma 4.3.5. There exists µ0 such that for g, h integer with µ := h/g− 1 ≥ µ0, there exists

W0 > 0 and s = s(µ) such that for all 1 < s < s(µ) and q ≤ (µ+ 1)20, we have

Evg↑h(S)

2 + (wg−2)1/4
≤ 7

8

for all w > 0 even, and g ≥ 1 integer. Here the expectation is with respect to S being a

uniformly random element of Ew(0,max ≥ g).

Proof. First we assume that wg−2 ≤ 1. In this case, it is likely that k = 0, and it suffices to

use the bounds (2 + (wg−2)1/4) ≤ 3 and (a1 + · · ·+ ak+1)g−2 ≤ 1 and q1(ag−2≤W0) ≤ q. We get

E(vg↑(µ+1)g(ai))

2 + (wg−2)1/4
≤
s2µ−2E

(
3kq2k

)
2

≤ s2µ−2

2

(
1 + p

∞∑
k=1

p̃k−13kq2k

)

=
s2µ−2

2

(
1 + p

3q2

1− 3p̃q2

)

In the second inequality we have used Lemma 4.3.2, where p and p̃ are the probabilities in

the conclusion of that lemma. Recall that they converge to 0 exponentially in (µ− 1)2 as

µ→∞ (when wg−2 is bounded). Thus for any s > 1, if q is polynomial in µ, this expression

is bounded by 7
8

as long as µ is sufficiently large.
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Now we turn to the case wg−2 > 1. By (4.5), we have

Evg↑(µ+1)g(S)

2 + (wg−2)1/4
=
|Ew(0,max ≥ g,max < (µ+ 1)g)|

|Ew(0,max ≥ g)|
s2wg−2µ−2

2 + (wg−2)1/4
+ I (4.19)

where

I =
1

2 + (wg−2)1/4

1

|Ew(0,max ≥ g)|

∞∑
k=1

∑
a1+···+a2k+1=w

s2a1g−2µ−2|Za1(0 ↑ g,max < (µ+ 1)g)| · s2a2g−2µ−2|Za2(g ↓ 0,max < (µ+ 1)g)|

×
k+1∏
i=3

s2aig
−2µ−2|W↑

ai
(g → g, 0 ≤ min < max < (µ+ 1)g)|

×
2k+1∏
i=k+2

q21(aiµ
−2g−2≤W0)|Eai(g,max ≥ (µ+ 1)g)| · (2 + (aiµ

−2g−2µ−2)1/4).

Multiplying each term in the sum by

1 = µ−k
1

g2−w
2−a12−a2

k+1∏
i=3

g−12−ai
2k+1∏
i=k+1

2−aiµg,

we can write I =
∑∞

k=1Ak where

Ak =
µ−k

∑
a1+···+a2k+1=w FZ(a1)FZ(a2)

∏k+1
i=3 FB(ai)

∏2k+1
i=k+2 FE(ai)

(2 + (wg−2)1/4)g|Ew(0,max ≥ g)|2−w

where

FZ(a) = s2ag−2µ−2|Za(0 ↑ g,max < (µ+ 1)g)| · 2−a (4.20)

FB(a) = g−1s2ag−2µ−2|W↑
a(0→ 0,−g ≤ min < max < µg)| · 2−a

FE(a) = µgq21(aµ−2g−2≤W0)|Ea(0,max ≥ µg)| · 2−a(2 + (ag−2µ−2)1/4).

We bound Ak using the following observation, valid for any positive functions F1, . . . , F2k+1:

1

Z

∑
a1+···+a2k+1=w

2k+1∏
i=1

Fi(ai) ≤
1

Z

2k+1∑
j=1

∑
a1+···+a2k+1=w

aj≥w(2k+1)−1

2k+1∏
i=1

Fi(ai)

≤
2k+1∑
j=1

sup
w(2k+1)−1≤a≤w

Fj(a)

Z

2k+1∏
i=1
i 6=j

∞∑
a=0

Fi(ai).
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Now Lemmas 4.3.6, 4.3.7 and 4.3.8 below show that, given ε, if µ > 1 is sufficiently large and

s > 1 is sufficiently small, then for all q > 1 there exists L large and W0 small such that

Ak ≤ µ−k · [2 · CZ(2k + 1)3/2ΣZΣk−1
W Σk

E + (k − 1) · CW(2k + 1)3/2Σ2
ZΣk−2

W Σk
E

+ k · µ(2k + 1)3/2εΣ2
ZΣk−1

W Σk−1
E ]

≤ C2k+1µ−k(2k + 1)3/2(k + 1) + C2kµ−k+1(2k + 1)5/2kε, (4.21)

where in the last line we have absorbed all the constants C...,Σ... into a single constant C.

Therefore

I ≤
∞∑
k=1

C2k+1µ−k(2k + 1)3/2 + C2kµ−k+1(2k + 1)5/2kε.

Taking ε small and µ large gives I ≤ 1/8. Turning back to the rest of (4.19), we have

|Ew(0,max ≥ g,max < (µ+ 1)g)|
|Ew(0,max ≥ g)|

s2wg−2µ−2

2
≤ PEw(0)(maxS < (µ+ 1)g)

s2wg−2µ−2

2

≤ 3

2
e−c0w(µ+1)−2g−2 s2wg−2µ−2

2
.

Here we used Proposition A.1.1 for the second inequality. For sufficiently small s > 1, this is

bounded above by 3
4
.

Together with our bound I ≤ 1/8, this proves the desired estimate when wg−2 > 1.

6 inequalities

In this subsection we prove the inequalities needed in the proof of Lemma 4.3.5. For the

definitions of FZ, FE and FB, see (4.20), and let

Z = g|Ew(0,max ≥ g)|2−w · (2 + (wg−2)1/4).

Lemma 4.3.6. There exists ΣE > 0 such that for µ ≥ 2 sufficiently large, all q > 1, and

sufficiently small W0 we have

∞∑
a=1

FE(a) ≤ ΣE (4.22)
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uniformly in g. Furthermore, for every ε > 0,

sup
w≥a≥w(2k+1)−1

FE(a)

Z
≤ µ(2k + 1)3/2ε (4.23)

if µ is large and W0 small enough.

Proof. (4.22) is equivalent to: For all µ ≥ 2 sufficiently large, for all q > 1, for sufficiently

small W0,

∞∑
a=1

µgq1(ag−2≤W0µ2)|Ea(0,max ≥ µg| · 2−a · (2 + (ag−2µ−2)1/4) ≤ ΣE.

The left hand side only depends on µg, so we may replace µg with g. We will split the

sum into two parts: ag−2 ≤ W0 and ag−2 > W0. We have, by Stirling’s approximation and

Proposition A.1.1,

∞∑
a>g2W0

gq1(ag−2<W0)|Ea(0,max ≥ g)| · 2−a · (2 + (ag−2)1/4)

.
∞∑
a=1

g exp

(
−c0

g2

a

)
a−3/2(2 + (ag−2)1/4) =

∞∑
a=1

1

g2
exp

(
−c0

g2

a

)
(ag−2)−3/2(2 + (ag−2)1/4)

.
∫ ∞

0

x−3/2 exp

(
−c0

1

x

)
(2 + x1/4)dx. (4.24)

On the other hand, a similar sequence of computations shows that∑
a≤g2W0

qg|Ea(0,max ≥ g)| · 2−a · (2 + (ag−2)1/4) . q

∫ W0

0

x−3/2 exp

(
−c0

1

x

)
(2 + x1/4)dx.

Combining this with (4.24) proves (4.22).

Now we turn to the second inequality of the lemma. Choose µ1 = µ1(ε) large enough that

sup
w≥a≥w(2k+1)−1

2 + (ag−2µ−2)1/4

2 + (wg−2)1/4
< ε (4.25)

whenever wg−2 > µ2
1 and µ > µ1. By Proposition A.1.1 (parts a and c), there exists µ2 > 1

such that if µ > µ2 then

PEa(0)(maxS ≥ µg)

PEa(0)(maxS ≥ g)
. exp

(
−c0µ

2g2/a
)
≤ ε, whenever ag−2 ≤ µ2

1. (4.26)
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Choose µ > max(µ1, µ2). The same proposition also shows that if 0 < W0 < W0(µ, q, ε) is

sufficiently small, then

PEa(0)(maxS ≥ µg)

PEa(0)(maxS ≥ g)
≤ εq−1, whenever ag−2 < W0. (4.27)

By Stirling’s approximation and the monotonicity Lemma A.2.3,

|Ea(0,max ≥ µg)|2−a

|Ew(0,max ≥ g)|2−w
=
|Ea(0)|2−a · PEa(0)(maxS ≥ µg)

|Ew(0)|2−w · PEw(0)(maxS ≥ g)

≤ C0

( a
w

)−3/2

·
PEa(0)(maxS ≥ µg)

PEa(0→0)(maxS ≥ g)
. (4.28)

From this we see that to prove (4.23) it suffices to show that

sup
w≥a≥w(2k+1)−1

q21(aµ−2g−2≤W0) PEa(0)(maxS ≥ µg)

PEa(0→0)(maxS ≥ g)
· 2 + (ag−2µ−2)1/4

2 + (wg−2)1/4
≤ ε.

The case W0 ≤ ag−2 ≤ µ2
1 follows from (4.26), whereas (4.27) takes care of the case

ag−2 < W0, and the case ag−2 > µ2
1 follows from (4.25) and (4.28).

Lemma 4.3.7. There exist constants ΣW, CW <∞ so that the following holds. For µ ≥ 2,

there exists s > 1 such that

∞∑
a=1

FB(a) ≤ ΣW (4.29)

uniformly in g, and if wg−2 ≥ 1, then for all k > 1,

sup
w(2k+1)−1≤a≤w

FB(a)

Z
< CW(2k + 1)3/2. (4.30)

Proof. Let p = PW
↑
a(0→0)(−g ≤ minS < maxS < µg). Then by (A.7),

p ≤ PW
↑
a(0→0)(−g ≤ minS) ≤ 4(ag−2)−1.

Using this together with Proposition A.1.1c) gives

p ≤ min(3/2e−c0µ
−2ag−2

, 4a−1g2).
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We have, by Stirling’s approximation (Lemma A.4)

|W↑
a(0→ 0,−g ≤ min < max < µg)| · 2−a = |W↑

a(0→ 0)| · 2−ap

≤ Cstira
−1/2 min(3/2e−c0µ

−2ag−2

, 4a−1g2).

Now choose T large enough and s small enough that C0e
−c0µ−2xs2µ−2x ≤ 8x−1 for real numbers

x ≥ T . By making s > 1 smaller if necessary, we can assume that s2xµ−2 ≤ 2 for x ∈ [0, T ].

Later in the proof we will also need to assume that T ≥ 1.

By considering the cases 2ag−2 ≥ T and 2ag−2 < T separately, we get

sag
−2µ−2 |W↑

a(0→ 0,−g ≤ min < max < µg)| · 2−a ≤ 8Cstira
−3/2g2. (4.31)

To prove (4.29), we split the sum into two parts and use (4.31) to bound the right sum:

∞∑
a=1

FB(a) ≤
∑
a≤g2

g−1 · sag−2µ−2

Cstira
−1/2 +

∑
a>g2

g−18Cstira
−3/2g2

≤
∑
a≤g2

g−1 · 2Cstir · a−1/2 +
∑
a>g2

g · 8Cstira
−3/2,

and both sums are bounded by a constant ΣB independent of g. This completes the proof of

(4.29).

For the other statement (4.30), we have from Proposition A.1.1b) and Stirling’s approxi-

mation (Lemma A.4) that there is a constant c > 0 such that

|Ew(0,max ≥ g)| · 2−w ≥ C−1
stira

−3/2c whenever wg−2 ≥ 1. (4.32)

Together with (4.31), this immediately implies (4.30).

Lemma 4.3.8. There exist constants ΣZ, CZ <∞ such that the following holds. For µ ≥ 2,

for sufficiently small s > 1

∞∑
a=1

FZ(a) ≤ ΣZ (4.33)

uniformly in g, and if wg−2 ≥ 1, then for all k ≥ 1,

sup
w≥a≥w(2k+1)−1

FZ(a)

Z
< CZ(2k + 1)3/2. (4.34)
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Proof. We have by Lemma A.2.2 and Proposition A.1.1c),

PZa(0↑g)(maxS ≤ (µ+ 1)g) ≤ 3/2e−c0(µ+1)−2ag−2

(4.35)

for some universal constant c0 > 0. Substituting (A.3) and (4.35) into the sum (4.33) gives

∞∑
a=1

FZ(a) ≤
∞∑
a=2

2Cstirg
−2(a/g2)−3/2 · e−

g2

3a e−c0(µ+1)−2ag−2

s2ag−2µ−2

≤ 2Cstir

∞∑
a=2

g−2(a/g2)−3/2e−
g2

3a

.
∫ ∞

0

x−3/2 · e−1/xdx =: ΣZ.

where the second last inequality holds as long as s2µ−2 ≤ ec0(µ+1)−2
. This proves the first

statement of the Lemma.

The second statement follows again from (A.3) and (4.32).

4.4 Finishing the proof

4.4.1 The measures are tight

In this section, we combine the results of the previous sections to prove a Hölder continuity

estimate for the welding solutions ιn.

To this end, we first note that Brownian scaled excursions eS := n−1/2S(n·) are Hölder

continuous with high probability: Indeed, the proof of Lemma A.0.4 can be adapted to show

that for every Hölder exponent δ < 1/2 there is a constant C = Cε,δ such that

P(eS is (C, δ)-Hölder) ≥ 1− ε

independently of n. See Lemma 1.5.1 of [9] for a different proof. Denoting (Te, de) the

associated tree and p : T→ Te the quotient map, it follows that

P(p is (2C, δ)-Hölder) ≥ 1− ε.

Fix n and denote A the set of excursions of length 2n for which p is (2C, δ)-Hölder. Let

I ⊂ T be an interval containing 0 and S ∈ A. Then p(I) contains the root and has diameter
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< 2Cdiam(I)δ. Denote J the ball of radius r = 2Cdiam(I)δ centered at the root. By

Proposition 4.3.1 and Proposition 4.2.4, f(I) can be separated from a circle of fixed radius

by a family of curves of modulus M > δ0 logλ(1/r)/2 with probability

P > 1− Cr2.25 = 1− C ′diam(I)2.25δ.

By Lemma 2.3.2, we have

diam(f(I)) . exp(−2πM) ≤ rπδ0/ log λ = Cdiam(I)δπδ0/ log λ

on this event. By the rotational invariance of the uniform arc pairing lamination, we get

the same estimate for all intervals I ⊂ T, not only those containing 0, if we restrict to the

excursions in A. Set

α = δπδ0/ log λ

and consider dyadic intervals Ij,k of size 2−k. By the above estimate we can make∑
(j,k):k≥k0

P(diam(f(I)) > Cdiam(I)α) < ε

by choosing k0 large, provided that we have chosen δ close enough to 1/2 that 2.25δ > 1.

Since every interval I ⊂ T can be covered by two adjacent dyadic intervals of lesser size, we

have

P(diam(f(I)) > 2Cdiam(I)α for some I with diam(I) < 2−k0) < ε.

By the Arzela-Ascoli theorem and Prokhorov’s theorem, this implies that the sequence of

measures µn are tight. Note that the Hölder exponent α is universal and can in principle be

computed.

4.4.2 Uniqueness of subsequential limits

We have proved that the law of the conformal welding solutions to the uniform random

arc pairing laminations converges along subsequences. All that remains is to show that the

limiting random maps do solve the Brownian lamination. The main steps in the proof of
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this fact are contained in Lemmas 4.4.1, 4.4.5 and Proposition 4.4.4. As a consequence of

our proof, we get a Hölder continuous solution to the Brownian lamination. By a result of

Jones and Smirnov [36], this means that the welding to the Brownian lamination is unique.

It follows that the conformal welding solutions ιn converge (not just along subsequences).

This last part of the argument is given at the end of this section, and completes the proof of

Theorem 1.3.2.

We topologize the space of laminations by considering it as a subset of the compact

subsets of T× T with the Hausdorff topology.

We first prove a continuity statement about the equivalence relation induced by an

excursion. The argument already appears in [9, Proposition 1.3.2].

Lemma 4.4.1. Let E ⊂ C([0, 1]) be the set of excursions e : [0, 1] → R+. Let e ∈ E be an

excursion for which ∼e has degree at most 3. If en ∈ E is a sequence converging to e with

respect to the sup norm, then ∼en→∼e.

Proof. Let e be an excursion and suppose en → e are excursions converging uniformly to e.

Let dn, d : T2 → [0,∞) be the pseudometrics corresponding to en and e respectively. Note

that the map taking an excursion to its pseudometric is continuous and in fact Lipschitz of

constant 4. In particular dn converges uniformly to d. Let ∼n= {(s, t) : dn(s, t) = 0} ⊂ T×T

and ∼= {(s, t) : d(s, t) = 0} be the equivalence relations induced by en and e.

Let nk be a subsequence for which ∼nk converges in K(T × T), and let ∼∞ denote the

subsequential limit.

The lemma will be proved if we can show that ∼∞=∼. First we show that that ∼∞⊂∼. If

(s, t) ∈∼∞ this means that for each nk there exists (snk , tnk) ∈∼nk such that (snk , tnk)→ (s, t).

This means that dnk(snk , tnk) = 0, and so d(s, t) = 0 because dnk converges uniformly to d.

This proves the claim.

Before proving that ∼∞⊃∼, let us make some definitions. Let I, J ⊂ [0, 1] be disjoint

closed intervals, and let A be the closure of the open interval in between I and J . We say

that the pair I, J is simply glued by e if e↓(A)− e↓(I) > 0 and e↓(A)− e↓(J) > 0. Recall that
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if A is a compact set then e↓(A) is the minimum of e on A.

The terminology comes from the following two observations.

1. If I, J are simply glued then there are infinitely many pairs (x1, x2) ∈ I × J such that

x1 ∼ x2. To see this, let h ∈ (e↓(I), e↓(A)) ∩ (e↓(J), e↓(A)) be an arbitrary point in the

intersection. Let x1 = max{x ∈ I : e(x) = h} and x2 = min{x ∈ J : e(x) = h}, these

are well defined by the intermediate value theorem. Then x1 ∼ x2. Varying h gives the

desired infinite collection of pairs.

2. If an equivalence class [x] of ∼ has 2 or 3 elements, then any pair of disjoint intervals

containing x1 and x2 respectively are simply glued by ∼. This can be seen by considering

the cases when |[x]| = 2 and |[x]| = 3 seperately.

The point is that ‘simple gluing’ is preserved under uniform limits of the excursion, and

we can now prove that ∼∞⊃∼. Suppose (x, y) ∈∼, Let I and J be closed balls of radius

ε centered at x and y respectively, then since the degree of ∼ is bounded by 3, I and J

are simply glued by e. It is easy to see then that I and J are simply glued by enk , for

sufficiently large nk. It follows that there exists xnk , ynk in I and J respectively such that

xnk ∼nk ynk . By construction, |x− xnk | < ε and |y − ynk | < ε, and since ε was arbitrary, we

get (x, y) ∈∼∞ .

As a consequence of this Lemma, we get that the laminations induced by the welding

map converge in law to the Brownian lamination.

Corollary 4.4.2. Let ιn : D∗ → C be the conformal welding map for a uniform random arc

pairing lamination with n edges. Let ∼ιn be the associated lamination. Then ∼ιn converges

in law to the Brownian lamination.

Now we wish to show that the subsequential limits of the ιn solve the Brownian lamination.

First we need to know that continuous maps induce laminations.
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Lemma 4.4.3 ([57, Proposition II.3.3]). Suppose f : D∗ → C is homeomorphism and

extends continuously to D∗. Then ∼f is a lamination. Here ∼f is the equivalence relation

x ∼f y ⇐⇒ f(x) = f(y).

It is an easy exercise to show that if ιn converges uniformly to ι then any subsequential

limit ∼∞ of the induced laminations ∼ιn must contain the lamination of the limit ∼ι. The

reverse inclusion ∼∞⊃∼ι is not true in general so we cannot say that ∼∞=∼ι and hence

∼n→∼ι. The next two lemmas allow us to get around this issue. The first lemma shows

that, in our setting, the lamination of the limit, ∼ι, must have finite equivalence classes.

The second lemma shows that no chords can be added to the limit of the laminations, ∼∞,

without creating an infinite equivalence class. Together with the aforementioned fact that

∼∞⊂∼ι, this proves that ∼∞=∼ι.

Proposition 4.4.4. Suppose f : D∗ → C\E is conformal and extends continuously to the

boundary. Suppose f is Hölder continuous on T with exponent α. Then |f−1(p)| ≤ 2/α for

all p ∈ f(D). In particular if ∼ is the lamination induced by f then ∼ has finite equivalence

classes.

Note that the bound is sharp, as can be seen by considering the conformal maps to the

exterior of the ‘stars’ Km := {z : zm ∈ [0, 1]}.

Proof. Let m be a finite integer such that m ≤ |f−1(p)| (this is to circumvent any difficulties

that might occur if |f−1(p)| =∞). For sufficiently small r > 0, the preimage f−1(Br(p)) ∩ T

consists of at least m disjoint arcs, each containing a point of f−1(p). Suppose f is (C, α)-

Hölder continuous on T. Then the diameter of each arc is greater than (r/C)1/α. Using the

Lebesgue measure in (2.2), it is a straightforward computation to show that the logarithmic

capacity of f−1(Br(p)) is bounded below by c1r
1/(mα) for some constant c1 that does not

depend on r. Let Γ be the family of paths in D∗ joining {z : |z| = 2} to f−1(Br(p)) ∩ T. By

Pfluger’s Theorem 2.3.6 and the preceding observation about the capacity, we have that the

extremal length of Γ is (up to an additive constant) bounded above by 1
π

log(r−1/(mα))
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On the other hand, we know by conformal invariance that the extremal length of Γ is (up

to an additive constant) bounded below by 1
2π

log (r−1). Taking r → 0 shows that m ≤ 2
α

as

desired.

Recall from the comment after Lemma 4.4.1 that if ιn is the welding map for the uniform

random tree then ∼ιn converges to the Brownian lamination.

Lemma 4.4.5. Let ∼ be the Brownian lamination. Almost surely, it is ‘infinitely maximal’

in the following sense: every chord in T not in ∼ crosses infinitely many chords in ∼.

Proof. Suppose x � y, then de(x, y) > 0. Without loss of generality assume x < y. There

are three cases to consider. If e(x) > e(y), then for each e(y) < h < e(x) we can define

a1 = maxt<e(x) e(t) = h and a2 = mint∈(e(x),e(y)) e(t) = h, then a1 ∼ a2 and this chord crosses

(x, y). Since h was arbitrary, this gives infinitely chords (a1, a2) that cross (x, y).

The case e(x) < e(y) is similar.

On the other hand, suppose e(x) = e(y), then we must have m = e
↓([x, y]) < e(y). For

m < h < e(y), we can define a1 = maxt∈(e(x),e(y)) e(t) = h and a2 = mint>e(y) e(t) = h. Then

a1 ∼ a2 and this chord crosses (x, y). Since h was arbitrary, this gives infinitely chords (a1, a2)

that cross (x, y).

Now we can show that ∼ιn converges to the Brownian lamination.

Proof of Theorem 1.3.2. The space K(T2) is compact, and we have shown that µn is tight

on C(T). Therefore µ̃n is tight on K(T2)× C(T), and there is a sequence µ̃nk that converges

in distribution to a measure µ̃∞ on K(T2)× C(T).

By the Skorohod representation theorem, there is a coupling of (∼nk , ιnk) and (∼∞, ι) such

that (∼nk , ιnk)→ (∼∞, ι) almost surely, Moreover, by Lemma 4.4.1, the distribution of ∼∞
is that of a Brownian lamination. Furthermore, ∼ι must contain ∼∞ because ιnk converges

uniformly to ι. But ∼∞ is maximal in the sense that if ∼ι has strictly more chords than ∼∞
then ∼ι has an equivalence class with infinitely many points (Lemma 4.4.5). However, ∼ι
has finite equivalence classes by Proposition 4.4.4, so we have actually ∼ι=∼∞. By the main
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result of [36], there is only one measure on pairs (∼∞, ι) such that ∼ι=∼∞. It follows that

(∼n, ιn) converges to (∼∞, ι) in law.
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Appendix A

RANDOM WALK ESTIMATES

The estimates in this chapter are needed for Section 4. See in particular Section 4.2.1 for

explanations of the notation used here.

The following lemma will be used to convert probabilistic statements about the maximum

and modulus of continuity of bridge walks to corresponding statements about walks conditioned

to be positive. Note that the statement is meaningful only when w − g is even and g ≥ 1.

The g = 1 case is special because then the left hand side can be identified with {0, . . . , w −

1} × Ew−1(0).

Lemma A.0.1. There is a bijection

ϕ : {0, . . . , w − 1} × Zw(0 ↑ g)→ {1, . . . , g} ×Ww(0→ g) (A.1)

Moreover, the mapping preserves the maximum and modulus of continuity in the following

sense: if ϕ(t, S) = (y, S̃), then

1. If eS̃ is (L, 1/3)-Hölder continuous the eS is (2L, 1/3)-Hölder continuous.

2. 1
3

max |S| ≤ max |S̃| ≤ 3 max |S|.

Recall that eS : [0, 1]→ R is the Brownian rescaling of S, eS(t) = w−1/2S(wt).

The existence of the bijection is known as the Dvoretzky-Motzkin cycle lemma [23], but

the other two properties are usually not stated in the literature so we present the proof here.

Proof. First observe that there is a natural action of the cyclic group Zw = {0, . . . , w − 1}

on Ww(0→ g), defined by cyclically permuting the increments of the walks. More formally,
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if t0 ∈ Zw and S ∈Ww(0→ g), define

Ct0S(t) =

S(t0 + t)− S(t0) if 0 ≤ t ≤ w − t0

S(t+ t0 − w) + g − S(t0) if w − t0 ≤ t ≤ w.

(A.2)

Now we describe the map ϕ. Suppose (t0, S) ∈ {0, . . . , w − 1} × Z(0 ↑ g). Let y0 =

g −minS|[t0,w]. Since for S ∈ Z(0 ↑ g), the last step is always going up from g − 1 to g, we

have minS|[t0,w]| ≤ g − 1 and hence y0 ∈ {1, . . . , g}. Then ϕ(t0, S) = (y0, Ct0S) is the desired

mapping.

The inverse mapping is described as follows. Suppose (y0, S̃) ∈ {1, . . . , g} ×Ww(0→ g).

Let h0 = min S̃ + y0. Let s0 = max{s : S̃(s) = h0 − 1} + 1. Then S̃(s0) = h0 and

ϕ−1(y0, S̃) = (w − s0, Cs0S̃) is the desired inverse mapping, and the bijection is proved.

Statement 1) follows from the fact that if eS is (L, α)-Hölder continuous then for any t0,

eCt0S is (2L, α)-Hölder continuous. Statement 2) follows from the fact that the maximum

of any cyclic permutation of any walk S ∈Ww(0→ g) is bounded by (g −minS) + maxS

which is in turn bounded by 3 max |S|.

We will need the following asymptotics for the number of Z walks in Lemma 4.3.8.

Corollary A.0.2. We have, for integers a, g > 0

|Za(0 ↑ g)| = g

a

(
a

a
2

+ g
2

)
,

and

|Za(0 ↑ g)| · 2−a ≤ Cstirg
−2(a/g2)−3/2e−

g2

3a (A.3)

for some constant Cstir.

Proof. The equality follows immediately from (A.1). For the inequality, we use the simple

consequence of Stirling’s formula

C−1
stirw

−1/2 ≤
(
w

w/2

)
2−w ≤ Cstirw

−1/2 (A.4)
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and obtain

|Za(0 ↑ g)| · 2−a =
g

a

(
a

a
2

+ g
2

)
2−a =

g

a

(
a
a
2

)
2−a · (a/2)(a/2− 1) · · · (a/2− g/2 + 1)

(a/2 + 1)(a/2 + 2) · · · (a/2 + g/2)

≤ Cstirga
−3/2

(
1

1 + g
a

)g/2
≤ Cstirg

−2(a/g2)−3/2 · exp

(
− g

2

3a

)
,

where in the last equality we have used the fact that y log(1 + x) ≥ 2
3
xy when x ∈ [0, 1] and

y ≥ 0.

The next lemma allows us to convert probabilistic statements about walks to probabilistic

statements about bridges, and vice versa.

Lemma A.0.3 (Local absolute continuity of bridges and walks). Fix 0 < u < w integer,

suppose |h| ≤ c0w
1/2, and let A be a subset of Wu(0). Suppose u

w
≤ 3

4
. Then PWw(0→h)(S|[0,u] ∈

A) ≤ C0PWw(0)(S|[0,u] ∈ A), where the constant C0 only depends on c0.

If, in addition, there exists c1 ≤ 1 such that A only contains walks for which S(u) ≤

c1(w − u)2, then PWw(0)(S|[0,u] ∈ A) ≤ C0PWw(0→0)(S|[0,u] ∈ A) where C0 only depends on c1.

Proof. The first statement is proved for h = 0 in [38, Lemma 3], and the statement for general

h follows from the obvious modifications. It suffices to consider the case when A has only

one element, A = {S ′} and then the relevant probabilities can be written down explicitly in

terms of S ′(u). The second statement follows from the same proof.

For example, the previous lemma allows us to deduce the Hölder continuity of the Brownian

rescaling (4.6) of Z-walks:

Lemma A.0.4. For ε > 0, Λ, L2 > 1, there exists L3 > 0 large such that the following holds.

If g ≥ Λ with g − w even and if g′ = bg/Λc satisfies wg′−2 ∈ [L−1
2 , L2], then

P(eS is (L3, 1/3)− Hölder continuous ) ≥ 1− ε

where S is a uniform random walk of type Zw(0 ↑ g′,max < g).
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Proof. The idea of the proof is to relate walks of this type to walks of type B using Lemma

A.0.1. This relationship essentially preserves the modulus of continuity of the walk. Then

we use the fact that walks of type B are locally absolutely continuous to the simple random

walk. The Hölder continuity of the Z walks then follows from the Hölder continuity of the

simple random walk. This sort of argument was used in [38] to get uniform bounds for the

maximum of a random walk excursion.

It suffices to prove the result when S is a uniform random walk of type Zw(0 ↑ g′), because

the uniform measure on Zw(0 ↑ g′,max ≤ g′) is absolutely continuous to the uniform measure

on Zw(0 ↑ g′), indeed by Proposition A.1.1 we have PZw(0↑g′)(maxS < g) ≥ c0 for some

constant c0 that only depends on Λ and L2.

Lemma A.0.1 and its proof implies that we can sample a uniform random element of

Zw(0 ↑ g′) by choosing a uniform random element of Ww(0→ g′), and then applying a certain

(random) cyclic permutation of the increments, and as observed in that lemma, this cyclic

permutation preserves the modulus of continuity. Therefore it suffices to prove the result for

uniform random walks of type Ww(0→ g′). Now observe from the triangle inequality that if

a function is (L/2, α)-Hölder continuous when restricted to [0, 1/2] and [1/2, 1] respectively,

then it is (L, α)-Hölder continuous on [0, 1]. Therefore from symmetry and the union bound

it suffices to find L3 large enough that

PWw(0→g)(eS|[0,1/3] is not (L3/2, 1/3)− Hölder continuous) ≤ ε/2.

By Lemma A.0.3 below, the law of S|[0,dw/2e] under PWw(0→g′)is absolutely continuous to the

law of S|[0,dw/2e] under PWw(0) with a constant C0 that only depends on L2. So it suffices to

find L3 large enough that

PWw(0)(eS|[0,1/2] is not (L3/2, 1/3)− Hölder continuous) ≤ ε/(2C0).

This last statement follows from the proof of Kolmogorov’s continuity criterion.
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A.1 Bounds on the extrema of a random walk

In this section we collect some bounds on the probability that a random walk of length w

exceeds, or does not exceed, a given height y. The analogous bounds for Brownian motion

are simpler to state and prove, but we need statements that are uniform in w and y.

Proposition A.1.1. a) We have, for some c0 > 0,

PWw(0)(max |S| ≥ y) . exp

(
−2y2

w

)
,

PEw(0→0)(max |S| ≥ y) . exp

(
−c0

y2

w

)
,

and

PWw(0→0)(max |S| ≥ y) . exp

(
−c0

y2

w

)
,

PW↑
w(0→0)(max |S| ≥ y) . exp

(
−c0

y2

w

)
.

b) For δ > 0 there exists cδ > 0 such that if w ≥ δy2, then the conditional probabilities of

a) are either zero or bounded below by cδ,

P·(maxS ≥ y) ≥ cδ.

c) Finally, there exists c0 > 0 such that the conditional probabilities of a) satisfy

P·(max |S| ≤ y) ≤ 3

2
exp

(
−c0

w

y2

)
.

Proof. By André’s reflection principle [25, page 72],

PWw(0)(maxS ≥ y) = 2PWw(0)(S(w) > y) + PWw(0)(S(w) = y)

so that

2PWw(0)(S(w) > y) ≤ PWw(0)(maxS ≥ y) ≤ 2PWw(0)(S(w) ≥ y). (A.5)

Now PWw(0)(S(w) ≥ y) ≤ exp(−2y2/w) by Hoeffding’s inequality [33, Theorem 2] and by the

union bound we have proved the first claim PWw(0)(max |S| ≥ y) ≤ 4 exp(−2y2/w).
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On the other hand, by the central limit theorem we have that

PWw(0)(S(w) ≥ δ−1/2w1/2)→ c′δ > 0 as w →∞ (A.6)

and claim b) for Ww(0) follows. Claim c) for Ww(0) now follows from the strong Markov

property by decomposing the walk into subwalks of length proportional to y2 and then using

the result of part b) on each of these walks: if any subwalk varies more than 2y from its initial

point, then the maximum absolute value of the walk must exceed y. This shows that the

probability that the maximum is bounded by y is less than C0 exp
(
−c0

w
y2

)
. The constant

C0 may be taken to be 3
2

by taking c0 smaller if necessary.

A coupling argument similar to the proof of Lemma A.2.1 below shows that the absolute

maximum of a bridge is stochastically dominated by the absolute maximum of a Bernoulli

walk, so this proves a) for bridges Ww(0→ 0). The exact same proof works for W↑
w(0→ 0)

and Ww(0→ 1).

This latter statement can be used together with the cycle lemma, Lemma A.0.1, to prove

part a) for PEw(0).

Part b) for bridges and excursions is proved similarly to part b) for walks, and follows

from the fact that the measures converge to the Brownian bridge and Brownian excursion

respectively.

Part c) for bridges follows from part c) for walks together with Lemma A.0.3 above, which

says that the initial part of a random bridge is almost indistinguishable from the initial part

of a random walk. Part c) for excursions then follows from the cycle lemma.

The following bounds are useful when wg−2 is large. In particular, the second bound does

not degenerate even when wg−2 →∞.

Lemma A.1.2. For integers w, g > 0,

PW↑
w(0→0)(minS ≥ −g) ≤ 4w−1g2. (A.7)

For ε > 0, we have for sufficiently large µ that, for all w, g,

PWw(µg→µg)(minS > g|minS ≥ 0) ≥ 1− ε.
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Proof. We begin with the first inequality. The statement is vacuously true for w−1g2 > 1/4,

so in what follows we can assume in particular that g
w/2
≤ 1/2.

Recall that W↑
w(0→ 0) maps bijectively onto Ww−2(0→ 0), and this map can be realized

by forgetting the first and last steps of the walk and translating the whole walk up one unit.

Therefore

PW↑
w(g→g)(minS ≥ 0) = PW↑

w(0→0)(minS ≥ −g) = PWw−2(0→0)(minS ≥ −g + 1). (A.8)

We have |Ww−2(0 → 0)| =
(
w−2
w/2−1

)
, and by André’s reflection principle, |Ww−2(0 →

0,minS < −g + 1)| = |Ww−2(0→ −2g)| =
(

w−2
w/2+g−1

)
. Therefore

PWw−2(0→0)(minS < −g + 1) =

(
w/2− g
w/2

)(
w/2− g + 1

w/2 + 1

)
· · ·
(

w/2− 1

w/2 + g − 1

)
≥
(

1− g

w/2

)g
≥ e−4g2/w (A.9)

≥ 1− 4g2/w

where in the last two inequalities we have used the facts that 1− x ≥ e−2x for x ∈ [0, 1/2],

and e−x ≥ 1− x.

Together with (A.8), this proves the first inequality of the lemma.

Notice that the derivation leading up to (A.9) actually shows that for θ > 0 there exists

M > 0 such that

PWw−2(0→0)(minS ≥ −g + 1) ≥ e−
(2+θ)g2

w whenever
g

w/2
≤ 2

M + 1
, (A.10)

because for θ > 0 there exists M > 0 such that 1− x ≥ e−(1+θ)x for x ∈ [0, 2/(M + 1)].

We also have the upper bound

PWw−2(0→0)(minS < −g + 1) =

(
w/2− g
w/2

)(
w/2− g + 1

w/2 + 1

)
· · ·
(

w/2− 1

w/2 + g − 1

)
≤
(

1− g

w/2 + g − 1

)g
≤ e−

g2

w/2+g−1 . (A.11)
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For the second inequality, fix θ > 0 small and M > 1 large such that 1
2+θ
· 1

1/2+(M+1)−1 ≥

1− ε/2 and such that (A.9) holds. First consider the case w−1g2 > 1
2Mµ

. Then by Proposition

A.1.1, we have for sufficiently large µ,

PWw(µg→µg)(minS > g) = PWw(0→0)(minS > −(µ− 1)g)

≥ 1− 4e−
(µ−1)2g2

2w ≥ 1− 4e−
(µ−1)2

4Mµ ≥ 1− ε.

Now suppose w−1g2 ≤ 1
2Mµ

so that in particular µg
w/2
≤ 1/M and so µg+1

w/2+1
≤ 2/(M + 1). We

have

PWw(µg→µg)(minS > g|minS ≥ 0) =
PWw(µg→µg)(minS > g)

PWw(µg→µg)(minS ≥ 0)

=
PWw(0→0)(minS > −(µ− 1)g)

PWw(0→0)(minS ≥ −µg)
.

Now, (A.10) implies that

PWw(0→0)(minS ≥ −µg) = PW(w+2)−2(0→0)(minS ≥ −(µg + 1) + 1) ≤ 1− e−(2+θ)
(µg+1)2

w+2 ,

On the other hand, (A.11) gives

PWw(0→0)(minS > −(µ− 1)g) = 1− PW(w+2)−2(0→0)(minS ≤ −((µ− 1)g − 1) + 1)

≥ 1− e−
((µ−1)g−1)2

w/2+(µ−1)g−1

and we get

PWw(µg→µg)(minS > g|minS ≥ 0) ≥ 1− e−
((µ−1)g−1)2

w/2+(µ−1)g−1

1− e−(2+θ)
(µg+1)2

w+2

≥ ((µ− 1)g − 1)2

(µg + 1)2
· 1

2 + θ
· w + 2

w/2 + (µ− 1)g − 1

≥ ((µ− 1)g − 1)2

(µg + 1)2
· 1

2 + θ
· w + 2

w/2 + (w + 2)(M + 1)−1

≥ µ2

(µ+ 1)2
· 1

2 + θ
· 1

1/2 + (M + 1)−1

≥ µ2

(µ+ 1)2
(1− ε/2).
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where in the second inequality we have used the fact that 1−e−x
1−e−y ≥

x
y

when x ≤ y, which in

turn follows from the fact that x 7→ 1−e−x
x

is decreasing. In the third inequality we have used

the fact that (µ−1)g−1
w/2+1

≤ 2(M + 1)−1. The fourth inequality is true for g ≥ 1 and can be seen

be differentiating both sides with respect to g.

For sufficiently large µ, this last expression is greater than 1− ε, as desired.

Finally, the next lemma says that the bounds of Proposition A.1.1 still hold even when

we condition on certain events.

Lemma A.1.3. Let S be a uniformly random walk of type Ww(g → g,min ≥ 0). Then

P(maxS ≥ µg) . e−c0(µ−1)2g2/w.

Similarly, PWw(µg→µg)(minS ≤ g|minS ≥ 0) . e−c0(µ−1)2g2/w.

Proof. By translation invariance, Lemma A.2.4 below, and Proposition A.1.1,

PWw(g→g)(maxS ≥ µg|minS ≥ 0) = PWw(0→0)(maxS ≥ (µ− 1)g|minS ≥ −g)

≤ PEw(0→0)(maxS ≥ (µ− 1)g) . exp

(
−c0

(µ− 1)2g2

w

)
and this proves the first statement.

The second statement follows from a similar argument, using Lemma A.2.5 below and

Proposition A.1.1.

A.2 Monotonicity properties of conditioned random walks

The next few lemmas make precise some intuitively clear monotonicity relations between

various types of walks.

Lemma A.2.1 (Strong Monotonicity). Suppose w > 0 is even and fix a partition of [0, w]

into almost disjoint closed intervals A1, . . . , Am with endpoints that are even integers. Let

S be a uniformly random walk of type Ew(0 → 0). For i = 1, . . . ,m let S̃i be a uniformly

random element of EAi(0 → 0). Let S̃ be the concatenation of the Si, so that S̃ ∈ Ew(0).

Then maxS � max S̃ = max S̃1 ∨ · · · ∨max S̃m.
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Proof. For i = 1, . . . ,m, let Ii = [τ−i , τ
+
i ] where τ−i , τ

+
i is the first and last time respectively

that S intersects Si. In the case that these times do not exist, let Ii = ∅.

Conditioned on {Ii}mi=0 and the values of S at the endpoints of the Ii, the collection of walks

{S|Ii}i has the distribution of m+ 1 independent bridges (conditioned to be nonnegative).

Likewise, {S̃|Ii}i has the same distribution.

Thus if we define S ′ to be the excursion obtained by replacing the part of S on each Ii

with the corresponding part of S̃, then S ′ has uniform distribution on Ew(0). On the other

hand, S|Ai\Ii ≥ S̃|Ai\Ii pointwise, due to the boundary conditions of S̃|Ai . It follows that

S ′ ≥ S̃ pointwise, and so (S ′, S̃) is a coupling which proves the desired result.

Lemma A.2.2. Let S be a uniform random element of Ew(0) and let S̃ be a uniform random

element of Zw+1(0 ↑ g), where g ≥ 1. Then max S̃ � maxS.

Proof. The proof is the similar to the proof of Lemma A.2.1.

Lemma A.2.3 (Monotonicity). For all integer g > 0 and w2 ≥ w1 even,

PEw2 (0→0)(max ≥ g) ≥ PEw1 (0→0)(max ≥ g).

Proof. Take I1 = [0, w1] and I2 = [w1, w2] in Lemma A.2.1.

Lemma A.2.4. Fix g ≥ 0. Let S be a uniformly random element of Ew(0) and let S̃ be a

uniformly random element of Ww(0→ 0,min ≥ −g). Then maxS � max S̃.

Proof. Let A ⊂ [0, w] be the set of times for which (the linear interpolation of) S̃ is strictly

negative. Conditioned on A, the distribution of S̃|[0,w]\A is that of independent excursions

over each component of [0, w]\A. It follows from Lemma A.2.1 that maxS � max S̃.

Lemma A.2.5. Fix w > 0 even, g ≤ 0 and h ≥ g. Let S be a uniform random walk in

Ww(h→ 0) and let S̃ be the same object but conditioned on minS ≥ g. Then S̃ � S.

Proof. We have

P(minS ≥ g|S(1) = h+ 1) ≥ P(minS ≥ g).
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First notice that

PWw(h→0)(minS ≥ g|S(1) = h+ 1) ≥ PWw(h→0)(minS ≥ g). (A.12)

This statement can be proved by a coupling argument. We can couple the two types of walks

by running them independently until they meet, then making them equal to each each other.

In this coupling, the walk satisfying S(1) = h+ 1 will always dominate the other walk, and

this proves the statement.

On the other hand, using the statement with Bayes’ rule gives

PWw(h→0)(S(1) = h+ 1|minS ≥ g) ≥ PWw(h→0)(S(1) = h+ 1). (A.13)

Using this, we get a coupling of S̃ and S for which S̃ ≥ S: We ensure that S̃(1) ≥ S(1) using

(A.13), then we let the walks evolve independently until they meet again, and then we use

(A.13) again, and so on.
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Appendix B

LARGE DEVIATIONS FOR MARKOV CHAINS

The results of this section can be found in [20]. For the reader’s convenience, we give a

self contained presentation.

Let ω1, ω2, . . . be a Markov chain on a state space Ω with transition kernels π(x, dy). Let

u : Ω→ R be a function. For each x, y ∈ Ω× Ω, let f(x, y) = u(y)∫
u(z)π(x,dz)

.

Lemma B.0.1. For each n ≥ 1 and any choice of ω1, we have

E (f(ω1, ω2)f(ω2, ω3) · · · f(ωn−1, ωn)) = 1.

Proof. We have, by the tower property and the Markov property,

E (f(ω1, ω2)f(ω2, ω3) · · · f(ωn−1, ωn)) = E[E[f(ω1, ω2)f(ω2, ω3) · · · f(ωn−1, ωn)|(ω1, ω2)]]

= E[f(ω1, ω2)E[f(ω2, ω3) · · · f(ωn−1, ωn)|ω2]]

= E[f(ω1, ω2)]

= 1

where the second last equality is by induction on n.

Now let Γ be a set of probability measures on Ω. For u : Ω→ (0,∞), let λu : Ω→ R̃ be

the function

λu(x) = log

(
u(x)∫

u(y)π(x, dy)

)
.

For x ∈ Ω, let δx denote the Dirac mass at x.

Theorem B.0.2. For any u : Ω→ (0,∞), we have

P

(
1

n

n∑
k=1

δωk ∈ Γ

)
≤ Eu(ω1)

inf u
exp

(
−n inf

µ∈Γ

∫
λudµ

)
. (B.1)
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Proof. Observe that

1

{
1

n

n∑
k=1

δωk ∈ Γ

}
≤ exp

(
1

n

n∑
k=1

λu(ωk)− inf
µ∈Γ

∫
λudµ

)
because the term in the parentheses is positive whenever the expression on the left is

equal to 1. Taking expectations of the n−th power of both sides yields

P

(
1

n

n∑
k=1

δωk ∈ Γ

)
≤ exp

(
−n inf

µ∈Γ

∫
λudµ

)
E exp

(
n∑
k=1

λu(ωk)

)
. (B.2)

We have

exp

(
n∑
k=1

λu(ωk)

)
=

n∏
k=1

u(ωk)∫
u(y)π(ωk, dy)

=
u(ω1)∫

u(y)π(ωn, dy)

n−1∏
k=1

u(ωk+1)∫
u(y)π(ωk, dy)

.

Thus

E exp

(
n∑
k=1

λu(ωk)

)
≤ Eu(ω1)

inf u
E
n−1∏
k=1

u(ωk+1)∫
u(y)π(ωk, dy)

.

The expectation of the product is equal to 1, by Lemma B.0.1. Substituting this into (B.2)

yields the result.

Theorem B.0.3. Let A ⊂ Ω be a subset. Suppose u : Ω→ [1,∞) is a function with λu ≥ 0.

Then for each ε > 0,

P
(

1

n

∣∣{k : ωk ∈ A}
∣∣ ≥ ε

)
≤ Eu(ω1) exp

(
−nε inf

ω∈A
λu(ω)

)
. (B.3)

Proof. We apply Theorem B.0.2 with Γ = {µ : µ(A) ≥ ε}. We have infµ∈Γ

∫
λudµ ≥

infµ∈Γ

∫
A
λudµ ≥ µ(A) infω∈A λu(ω) ≥ ε infω∈A λu(ω) because λu ≥ 0.
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