MAT303: Calc IV with applications

Lecture 8 - March 12021

Recently:

Ch 2.1 population models
$\frac{d P}{d t}=(\beta-\delta) P$

Ch 2.2 Analysis of $\frac{d P}{d t}=f(P)$

- Equlibria
- Stability
- Bifurcation

HW4 P22.

Today:

Ch 2.3 Acceleration/Velocity Models
$\frac{d v}{d t}=F$

Question:

- How do assumptions about air resistance affect the terminal velocity?

Question:

Question:

- How fast do we have to launch from the ground to escape the earth's orbit?

Newton's second law:

$$
\frac{d v}{d t}=F
$$

Today we will only consider:
$\frac{d v}{d t}=$ External Force + Gravity + Resistance

Question:

- How do assumptions about air resistance affect the terminal velocity of a falling object?

Question:

- Suppose a lunar lander is falling towards the moon.
- We want the velocity at landing to be 0.
-When should we turn on the upwards thrusters?

Question:

- How fast do we have to launch from the ground to escape the earth's orbit?

Today we will only consider:
$\varkappa \frac{d v}{d t}=$ External Force + Gravity + Resistance

- If close to earth, assume $G m_{1} / r^{2} \approx g$ constant.
- Air resistance: proportional to v or v^{2}
(in opposite direction to motion)

Question:

- How do assumptions about air resistance affect the terminal velocity of a falling object?

Question:

- Suppose a lunar lander is falling towards the moon.
- We want the velocity at landing to be 0 .
- When should we turn on the upwards thrusters?

Question:

- How fast do we have to launch from the ground to escape the earth's orbit?

$$
m \frac{d v}{d t}=\text { External Force }+ \text { Gravity + Resistance } g>0
$$

Suppose that

- There is no external force $m \frac{d v}{d f}=-g m e v$
- Gravity is constant
- Resistance is proportional to $v \quad \frac{d v}{d t}=-g-\left(\frac{R}{v}\right)$
- Can solve the separable equation for $v(t)$
- Can find y(t)
- Can also analyze using techniques from Ch2.2
- Main qualitative phenomenon: terminal velocity is $m g / k$.

Sep. variables.
$\frac{1}{-g-\rho v} d u=d t$
Velocity, \downarrow

$$
v(t)=\left(v_{0}+\frac{g}{\rho}\right) e^{-\rho t}-\frac{g}{\rho}
$$

Position:

$$
\begin{equation*}
y(t)=y_{0}+v_{\tau} t+\frac{1}{\rho}\left(v_{0}-v_{\tau}\right)\left(1-e^{-\rho t}\right) \tag{9}
\end{equation*}
$$

terminal

$$
\boldsymbol{m} \frac{d v}{d t}=\text { External Force }+ \text { Gravity }+ \text { Resistance }
$$

Suppose that

- There is no external force
- Gravity is constant
- Resistance is proportional to v^{2}

Careful about the signs!

- Can solve the separable equation for $v(t)$
- Can find $y(t)$
- Can also analyze using techniques from Ch2.2
- Main qualitative phenomenon: terminal velocity if $\sqrt{m g / k}$.

$$
\begin{aligned}
& a_{\text {eon }}: \quad \frac{d v}{d t}=-g-\rho v / v 1 \\
& \text { if } v>0, \quad \frac{d v}{d t}=-g-\rho v^{2}
\end{aligned}
$$

Sola is.

$$
v(t)=\sqrt{\frac{g}{\rho}} \tan \left(C_{1}-t \sqrt{\rho g}\right) \quad \text { with } \quad C_{1}=\tan ^{-1}\left(v_{0} \sqrt{\frac{\rho}{g}}\right)
$$

$$
\begin{aligned}
* \text { if } v<0, & k v(v) \\
& =k v(-v \\
& =-k v^{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d v}{d f} & =-g-\rho v(-v) \\
& =-g+v^{2} p
\end{aligned}
$$

$$
v(t)=\sqrt{\frac{g}{\rho}} \tanh \left(C_{2}-t \sqrt{\rho g}\right) \quad \text { with } \quad C_{2}=\tanh ^{-1}\left(v_{0} \sqrt{\frac{\rho}{g}}\right)
$$

$$
\boldsymbol{M} \frac{d v}{d t}=\text { External Force }+ \text { Gravity }+ \text { Resistance }
$$

Suppose that

- External force is 0
- Gravity $=\frac{G M}{r^{2}}$
- Resistance 0

$$
m \frac{d v}{d t}=-\frac{G M}{r^{2}} m
$$

$$
\frac{d v}{d t}=-\frac{G M}{r^{2}}
$$

So $\frac{d v}{d t}=\frac{d v}{d r} \frac{d r}{d t}=\frac{d v}{d r} v$.
So $\frac{d u}{d r} v=-\frac{G M}{r^{2}}$
So $v d v=-\frac{a M}{\sigma^{2}} d r$

Question:

- How fast do we have to launch from the ground to escape the earth's orbit?

$$
\begin{gathered}
\text { So } \\
\frac{1}{2} v^{2}=\frac{G M}{\sigma}+C \\
\frac{1}{2} V(0)^{2}=\frac{G M}{R}+C \\
{ }^{S_{0}} C=\frac{1}{2} V(0)^{2}-\frac{G M}{R}
\end{gathered}
$$

So

$$
\begin{aligned}
\frac{1}{2} v^{2} & =\frac{G M}{r}+\frac{1}{2} v(0)^{2}-\frac{G M}{R} \\
v^{2} & =2 G M\left(\frac{1}{r}-\frac{1}{R}\right)+v(0)^{2} .
\end{aligned}
$$

How big does $v(0)$ have to be to escape orbit?
As $r \rightarrow \infty$, want to be

So we want $\left.v_{0}\right)^{2}>2 \frac{2 i m}{m}$ we turn around and crash into earth.

$$
\text { ie. } V(0) \geq \sqrt{\frac{2 a \mathrm{~m}}{R}} \approx 6.95 \mathrm{mi} / \mathrm{s} \text {. }
$$

$$
\boldsymbol{m} \frac{d v}{d t}=\text { External Force }+ \text { Gravity + Resistance }
$$

Suppose that

- External force is 0 or $E>0$
- Gravity $=\frac{G M}{r^{2}}$
- Resistance 0

$$
m \frac{d v}{d t}=E-\frac{G M}{r^{2}} m
$$

Set up differential equations beformertiver is activated:
\square

$$
\frac{d v}{d t}=T-\frac{G M}{r^{2}}
$$

$$
v=\frac{d r}{d t}, \quad \text { so } \quad \frac{d u}{d t}=\frac{d v}{d r} v
$$

\square

$$
S_{0}
$$

$$
\frac{d v}{d r}=T-\frac{G M}{r^{2}}
$$

$$
\text { So } \quad \frac{1}{2} r^{2}=T_{r}+\frac{C M}{r}+C
$$

Question:

- Suppose a lunar lander is falling towards the moon.
- We want the velocity upon landing to be 0 .
- When should we turn on the upwards thrusters? Assume that they provide constant thrust.

Assume:

- Initial altitude is $\mathrm{y}(0)=53 \mathrm{~km}$
- Initial velocity is $\mathrm{v}(0)=1477 \mathrm{~km} / \mathrm{h}$ downwards.
- Thrusters give $T=4 \mathrm{~m} / \mathrm{s}^{2}$ deceleration
- Mass of moon is $M=7.35 \cdot 10^{22} \mathrm{~kg}$ of moon.
- Radius is $R=1740 \mathrm{~km}$ We want velocity el landing to

$$
0=4 R+\frac{G M}{R}+C_{1}
$$

Initial alt. is 53 km , initial kel is 1477

$$
\frac{1}{2} v(0)^{2}=\frac{G M}{(y(0)+R)^{2}}+C_{2}
$$

So, at tome of activation,
$C_{r}+\frac{C_{1}}{r}+C_{1}=\frac{C_{4} M}{r}+C_{2}$

Bifurcation and dependence on parameters

Consider:

$$
\frac{d x}{d t}=\{x(4-x)-h
$$

How does the qualitative nature of the solutions change when we modify h ?

https://www.desmos.com/calculator/u3x5w62sde

One interpretation: How does the number of equilibrium points depend on h ?

A bifurcation point for a parameter is a point at which the number of equilibrium solution changes.

FIGURE 2.2.12. The parabola $(c-2)^{2}=4-h$ is the bifurcation diagram for the differential equation $x^{\prime}=x(4-x)-h$.

Bifurcation diagram is a plot of parameter vs. the location of the equilibrium points.

$$
\begin{gathered}
\text { Because } \begin{array}{c}
x(4-x)-4=0 \\
\text { solution! } \\
4 x-x^{2}-4=0 \\
x^{2}-4 x+4=0 \\
(x-2)^{2}=0
\end{array}
\end{gathered}
$$

Bifurcation and dependence on parameters
Consider:

$$
\frac{d x}{d t}=k x-x^{3}
$$

Draw the bifurcation diagram.
Find Equilibria:

$$
\frac{d x}{d t}=0 \text { so } k x-x^{3}=0
$$

$$
\text { so } x\left(k-x^{2}\right)=0 \text {. }
$$

if $k>0$:

$$
c=0, \quad c=\sqrt{k}, c=-\sqrt{k}
$$

if $k=0$

$$
c=0 .
$$

if $k<0$ $c=0$

