MAT303: Calc IV with applications

Lecture 5 - February 172021

Today:

- Ch 1.6 Exact differential equations and

Substitution methods

- Changing variables is a common operation
- Can make the equation solvable/simpler
- Can give more insight into the DE
- Can demonstrate similarities between DEs.

From before,
We know how to solve:
$* \quad \frac{d y}{d x}=f(x)$
$\times \frac{d y}{d y}=f(x) g(4)$
Separable
$x \quad \frac{d y}{d x}+p(x) y=q(x) \quad$ Linear

Consider a function $f(x, y)$ of two variables.
$\frac{\partial}{\partial x}$ means "differentiate with respect to y "
$\frac{\partial}{\partial y}$ means "differentiate with respect to y "
$f(x, y)$
Example:
$f(x)=x^{2} y+\sin (x)$
Then $\frac{\partial}{\partial y} f=x^{2}+0$

And $\frac{\partial}{\partial x} f=2 x y 4 \cos x$

More notation:

$$
\begin{array}{ll}
f_{x} \text { manse } \frac{\partial}{\partial x} f & f_{r y} \text { means } \frac{\partial}{\partial y} \frac{\partial}{\partial x} f \\
f_{m} \text { mans } \frac{\partial}{\partial y} f & f_{x x} \text { means } \frac{\partial}{\partial x} \frac{\partial}{\partial x} f
\end{array}
$$

Higher order derivatives:

$$
\begin{array}{ll}
\frac{\partial}{\partial x} \frac{\partial}{\partial y} f=2 x . & \frac{\partial}{\partial x} \frac{\partial}{\partial x} f=2 y-\sin (x) \\
\frac{\partial}{\partial y} \frac{\partial}{\partial x} f=2 x & \frac{\partial}{\partial y} \frac{\partial}{\partial y} f=0 .
\end{array}
$$

Notice:

$$
f_{x y}=f_{y x}
$$

This is true in general. It's called Clairaut's theorem.

Example: Solve

$$
\frac{d y}{d x}=(x+y+3)^{2}
$$

Using the substitution $v=x+y+3$.

$$
\frac{d y}{d x}=v^{2}
$$

Need to get rid tHE.
We have

$$
y=v-x-3
$$

So $\frac{d y}{d x}=\frac{d u}{d x}-1$
So

$$
\frac{d v}{d x}-1=v^{2}
$$

So

$$
\frac{d v}{d x}=v^{2}+1
$$

$$
\begin{gathered}
\rightarrow b \times \frac{d y}{d x}=f(x) g(y) \\
\frac{1}{v^{2}+1} d v=d x \\
\arctan (v)=x+C \\
v=\tan (x+C)
\end{gathered}
$$

Separable

Find y : $y=\tan (x+c)-x-3$
Verify:

$$
\frac{d y}{d f}=\frac{1}{\cos ^{2}(x+c)}-1=\frac{1-\cos ^{2}(x+c)}{\cos ^{2}(x+c)}=\frac{\sin ^{2}(x+c)}{\cos ^{2}(x+c)}
$$

This works whenever you have a differential equation of the form $=\tan ^{2}(x \in C)$.
$\frac{d y}{d y}=F(a x+b y+c)$. Let $v=$ ara ty $+c c a c$

$$
\begin{array}{ll}
\frac{d y}{d x}=F(a x+b y+c) . & \text { Let } \begin{array}{l}
v=a x+b y+c \\
y=\frac{v-c-a x}{b} \\
\frac{d y}{d x}=F(u)
\end{array} \quad \begin{array}{l}
\frac{d y}{d x}=\frac{1}{b} \frac{d v}{d x}-\frac{a}{b} \\
\frac{1}{b} \frac{d v}{d x}-\frac{a}{b}=F(v)
\end{array} \quad \Rightarrow \quad \frac{d v}{d x}=b F(v)+a
\end{array}
$$

Transforming a differential equation like this is very common in applications.

For homogeneous equations like $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$,
the substitution

$$
v=\frac{y}{x}
$$

is useful.

Example: Solve for y :

$$
\begin{aligned}
& 2 x y \frac{d y}{d x}=4 x^{2}+3 y^{2} \\
& \frac{d y}{d x}=\frac{2 x}{y}+\frac{3 y}{2 x}=F\left(\frac{y}{x}\right) \\
& F(p)=\frac{2}{p}+\frac{3}{2} p \\
& \text { Let } v=\frac{y}{x} \\
& \text { Then } \\
& \frac{d y}{d x}=\frac{2}{v}+\frac{3}{2} v \\
& \frac{1}{\left(\frac{2}{v}+\frac{1}{2} v\right)} d v=\frac{1}{x} d x \\
& \frac{2 v}{4+v^{2}} d v=\frac{1}{x} d x \\
& \Rightarrow \int \frac{2 v}{4+v^{2}} d v=\log (x)+C \\
& \log \left(4+v^{2}\right)=\log (x+C \\
& 4+v^{2}=C|x| \\
& 4+\frac{y^{2}}{x^{2}}=(|x|
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
y=v x \\
\frac{d y}{d x}=\frac{d v}{d x} x+v \\
\frac{d v}{d x} x+v=\frac{2}{v}+\frac{3}{2} v \\
\frac{d v}{d x}=\frac{1}{x}\left(\frac{2}{v}+\frac{1}{2} v\right) \\
\hline \frac{d v}{d x}=\frac{1}{x}\left(\frac{2}{v}+\frac{1}{2} v\right) \\
\frac{1}{\left(\frac{2}{v}+\frac{1}{2} v\right)} d v=\frac{1}{x} d x \\
\frac{2 v}{4+v^{2}} d v=\frac{1}{x} d x \\
\Rightarrow \int \frac{2 v}{4+v^{2}} d v=\log (x \mid+C \\
\log \left|4+v^{2}\right|=\log (x \mid+C \\
4+v^{2}=C|x| \\
4+\frac{y^{2}}{x^{2}}=C|x|
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{y^{2}}{x^{2}}=C(x)-4 \\
& y^{2}=C|x| x^{2}-4 x^{2}
\end{aligned}
$$

$$
\left.\frac{d y}{d x}+P(x) y=Q(x) y^{n}\right] \text { nou-linear }
$$

You should take $v=y^{1-n}$ which turns it into

$$
\left.\frac{d v}{d x}+(1-n) P(x) v=(1-n) Q(x)\right\} \longleftarrow \text { linear. }
$$

Example:

$$
2 x y y^{\prime}=4 x^{2}+3 y^{2}
$$

Example:

$$
\frac{d}{d x} y^{2} x=y^{2}+2 y y^{\prime} x
$$

$$
2 x+y^{2}+2 x y y^{\prime}=0
$$

Notice that

$$
2 x+y^{2}+2 x y y^{\prime}=\frac{d}{d x}\left(x^{2}+y^{2} x\right)
$$

The differential equation becomes

$$
\frac{d}{d x}\left(x^{2}+y^{2} x\right)=0
$$

Sola:

$$
x^{2}+y^{2} x=c
$$

(C is arbitrary).

Definition: A DE $M+N \frac{d y}{d x}=0$ is exact if we can find $f(x, y)$ such that

$$
M+N \frac{d y}{d x}=\frac{d}{d x} f
$$

Is the following DE exact or not?
Claimants:

$$
\left.y+3 x \frac{d y}{d x}=\frac{d}{d x}(H x, y)\right)
$$

$f_{x y}=f_{y x}$

$$
\begin{gathered}
f_{x}+f_{y} \frac{d y}{d x}=\frac{d}{d x}(f(x, y)) \\
f_{y x}=3
\end{gathered} \begin{aligned}
& \text { chaikinuariabt. } \\
& \text { rule }
\end{aligned}
$$

Test for exactness: A DE $M+N \frac{d y}{d x}=0$ can only be exact if $M_{y}=N_{x}$.

Want:

$$
y+3 x y^{\prime}=
$$

Example:

$$
2 x+y^{2}+2 x y y^{\prime}=0
$$

Definition: A DE $M+N \frac{d y}{d x}=0$ is exact if we can find $f(x, y)$ such that $f_{x}=M$ and $f_{y}=N$.

Is the following DE exact or not?

Is the following DE exact or not?

Test for exactness: A DE $M+N \frac{d y}{d x}=0$ can only be exact if $M_{y}=N_{x}$.

If we know an equation is exact, it is easy to figure out what f is.

$$
\sqrt{\left(6 x y-y^{3}\right)} d x+\left(4 y+3 x^{2}-3 x y^{2}\right) d y=0
$$

1)

$$
\frac{M}{\left(6 x y-y^{3}\right)}+\sqrt{\left(4 y+3 x^{2}-3 x y^{2}\right)} \frac{d y}{d x}=0
$$

check if it's exact.
(a) les
b) N_{o}.

$$
\begin{aligned}
& M_{y}=6 x-3 y^{2} \\
& N_{x}=6 x-3 y^{2}
\end{aligned}
$$

Want:

$$
\begin{aligned}
& \frac{d}{d x}(f(x, y))=M+\left(\begin{array}{l}
N \frac{d y}{d x} \\
\frac{d}{d x}(f(x, y))= \\
f_{x}
\end{array}\right)+f_{y} \frac{d y}{d x}
\end{aligned}
$$

fIst constraint:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=f_{x}=6 x y-y^{3} \\
& S_{0}
\end{aligned}
$$

a) $3 x^{2} y-x y^{3}$
b) $3 x^{2} y-x y^{3}+2$
c) $3 x^{2} y-x y^{3}+2$ a $x^{4} y-x y^{3}+e^{4} \sin y^{\prime}$
d) I doit know
$f(x, y)=3 x^{2} y-x y^{3}+g(y) N$ arbitiang func. of y.
and constraint:

$$
\begin{gathered}
f_{y}=\frac{3 x^{2}-3 x y^{2}}{g^{\prime}(y)=4 y}+g^{\prime}(y)=4 y+3 x^{2}-3 x y^{2} \\
g(y)=2 y^{2}+c
\end{gathered}
$$

Definition: A DE $M+N \frac{d y}{d x}=0$ is exact if we can find $f(x, y)$ such that $f_{x}=M$ and $f_{y}=N$.

Test for exactness:

$$
M_{y}=i^{1}
$$

$1 . e$

$$
\begin{align*}
& \frac{d}{d x}\left(3 x^{2} y-x y^{3}+2 y^{2}\right)=0 . \tag{I}\\
& \text { So } 3 x^{2} y-x y^{3}+2 y^{2}=C . \\
& \text { (implicitly solution). }
\end{align*}
$$

$$
\begin{array}{l|l|l}
0 & \text { r. J }
\end{array}
$$

- Differential equations can often be transformed into different forms
- Useful to reduce one problem to another problem
- Useful when using a computer to solve the differential equation

Exact equations:

$$
M d x+N d y=0
$$

1) Check that its exact: $M_{y}=N_{x}$
2) Find f such that

$$
d f=M d x+N d y \quad\left(f_{r}=M, f_{y}=N\right)
$$

3) Solution is

$$
\begin{aligned}
& f(x, y)=\mathbb{C} \\
& \text { Cimplicit solution). }
\end{aligned}
$$

