MAT303: Calc IV with applications

Lecture 4 - February 152021

Last time:

- Ch 1.4 Separable equations
- $\frac{d y}{d x}=f(x) g(y) \longrightarrow \frac{1}{g(y)} d y=f(x) d x$
- Solving problems using separable equations. (Applications)
- Radioactive decay
- Water escaping from a tank

Today:

- Ch 1.5 Integrating Factors for first order linear D
why it motes:
Chain mule See tertboolc.

Separation of variables does not work:

Last time:

- Ch 1.4 Separable equations
- $\frac{d y}{d x}=f(x) g(y)$
- Solving problems using separable equations. (Applications)
- Radioactive decay
- Water escaping from a tank

Separation of variables does not work:

$$
\begin{aligned}
& \left(4+t^{2}\right) \frac{d y}{d t}+2 t y=4 t \\
& \frac{d y}{d+t}=\frac{4+2+2}{c+4+2}
\end{aligned}
$$

Today:

- Ch 1.5 Integrating Factors

Product rule:

$$
\frac{d}{d t}(f g)=f^{\prime} g+f g^{\prime}
$$

E.g:

$$
\begin{aligned}
& \frac{d}{d t}(t \sin t)=\sin t+t \cos t \\
& \frac{d}{d t}\left(t^{2} y\right)=2 t y+t^{2} \frac{d y}{d f}
\end{aligned}
$$

$$
\text { If } \frac{d y}{d t}=t^{2}, \text { what is } y ?
$$

Ans: $y=t^{3}+C$

$$
\begin{aligned}
& \text { If } \frac{d}{d t}(y t)=t^{3} \text {, what is } y ? \\
& y t=\frac{t^{4}}{4}+C \\
& y=\frac{t^{3}}{4}+\frac{c}{t} \\
& \text { If } \frac{d}{d t}\left(\left(4+t^{2}\right) y\right)=t, \text { what is } y ? \\
& \left(4+t^{2}\right) y=\frac{t^{2}}{2} \\
& y=\frac{f^{2}}{2\left(4+t^{2}\right) .}
\end{aligned}
$$

Example: Solve $\left(4+t^{2}\right) \frac{d y}{d t}+2 t y=4 t$
By product rule, (replace LH(S).

$$
\begin{gathered}
\frac{d}{d t}\left(\left(t+t^{2}\right) y\right)=4 t \\
\|
\end{gathered}
$$

$$
\left(4 t t^{2}\right) y=2 f^{2}
$$

$$
\vee
$$

$$
y=\frac{2 t^{2}}{4+t^{2}}+\frac{c}{4+t^{2}}
$$

Key idea: writing LHS as $\frac{d}{d t}(\ldots)$

From previous slides:

Produce f rule $\frac{d}{d t}\left(\left(4+t^{2}\right) y\right)=\stackrel{\left(4+t^{2}\right) \frac{d y}{d t}+2 t y}{ }$
If $\frac{d}{d t}\left(\left(4+t^{2}\right) y\right)=4 t$, then $y=\frac{2 t^{2}}{\left(4+t^{2}\right)}$

Example 1: Find the solution to the DE
$\frac{d y}{d t}-2 y=e^{5 t}$
Want to use previous trick: LHS $=\frac{d}{d t}(\ldots)$?

$$
\left.\frac{d}{d t}(\not)\right)=e^{5 t}
$$

impossible
integrating
factor
(3) Multiply both sides by $\mu=e^{-2 t}$:

$$
e^{-2 t} \frac{d y}{d t}-2 e^{-2 t} y=e^{3 t}
$$

Then

$$
\frac{d}{d t}\left(e^{-2 t} y\right)=e^{3 t}
$$

(1) Integrate.

$$
e^{-2 t} y=\frac{1}{3} e^{3 t}+c
$$

(2) Solve for y :

$$
y=\frac{1}{3} e^{\delta t}+C e^{2 t}
$$

is the general solution-
(3) Verify:
$\frac{d y}{d t}-2 y=\frac{5}{3} e^{5 t}+2 c e^{2 t}-\frac{2}{3} e^{5 t}-2 c e^{2 t}$

$$
=e^{5 t}
$$

How did we know to multiply by $\mu=e^{-2 t}$?

Answer: $\mu=e^{\int p d t}$ always works.
why it works:

$$
\begin{gathered}
y^{\prime}+p y=q \\
\begin{array}{l}
N_{0} l l d d r \\
b_{y} \\
e^{\rho_{p d t}}:
\end{array} e^{\delta p d t} y^{\prime}+e^{\delta p} p^{d t} p y=q \\
\left(y e^{S p d t}\right)^{\prime}=q
\end{gathered}
$$

$$
y^{\prime}+p y=q
$$

How did we know to multiply by $\mu=e^{-2 t}$?

Answer: $\mu=e^{\int p d t}$ always works.

Solving linear DEs this way is called the method of integrating factors.

Example: Solve $t \frac{d y}{d t}+2 y=4 t^{2}$
(-1) Get into standard form.

$$
y^{\prime}+\frac{\sqrt{2}}{4} y=4(t)=4 t
$$

$\begin{aligned} & \text { (0) } M_{0} l t i p l y \quad \mu=e^{\rho p(t) d t}=e^{\int \frac{2}{t} d t} \\ & t^{2} y^{\prime}+2 t y=4 t^{3}\end{aligned}=e^{2 \log (t)}=t^{2}$
(1) Write LHS as ($)^{\prime}$:

$$
\left(t^{2} y\right)^{\prime}=4 t^{3}
$$

(2) Integrate

$$
t^{2} y=t^{4}+c
$$

(3) Solve for y : $y=t^{2}+\frac{c}{t^{2}}$.

Standard form:

$$
y^{\prime}+p y=q
$$

How to come up with:

$$
\begin{gathered}
\mu y^{\prime}+p \mu y=(\mu y)^{\prime} \\
\Rightarrow \mu y^{\prime}+p \mu y=\mu^{\prime} y+\mu y^{\prime} \\
\Rightarrow \mu p y=\mu^{\prime} y \\
\Rightarrow \mu p=\mu^{\prime} \\
\Rightarrow \mu p=\frac{d \mu}{d t} \\
\Rightarrow p d t=\frac{1}{\mu^{\mu}} d \mu
\end{gathered}
$$

1. Write DE in 'standard form'

$$
y^{\prime}+p y=q
$$

2. Multiply by integrating factor $\mu=e^{\int p d t}$

$$
\mu y^{\prime}+\mu p y=q \mu
$$

3. Rewrite LHS:

$$
(y \mu)^{\prime}=q \mu
$$

$$
\begin{aligned}
& y=\int q \mu \\
& y=\mu^{-1} \int q \mu
\end{aligned}
$$

1. Wishful thinking:
2. Solve to find the correct expression for μ

Assume that Lake Erie has a volume of $480 \mathrm{~km}^{3}$ and that its rate of inflow (from Lake Huron) and outflow (to Lake Ontario) are both $350 \mathrm{~km}^{3}$ per year. Suppose that at the time $t=0$ (years), the pollutant concentration of Lake Erie-caused by past industrial pollution that has now been ordered to cease-is five times that of Lake Huron. If the outflow henceforth is perfectly mixed lake water, how long will it take to reduce the pollution concentration in Lake Erie to twice that of Lake Huron?

Lecture recording will be up soon.

Answering questions ontic $7: 25$.

