MAT303: Calc IV with applications

Lecture 24 - May 32021

Recently: Solutions homogeneous constant coefficient systems:

THEOREM 1 Fundamental Matrix Solutions

Let $\boldsymbol{\Phi}(t)$ be a fundamental matrix for the homogeneous linear system $\mathbf{x}^{\prime}=\mathbf{A x}$. Then the [unique] solution of the initial value problem
$>$

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{A x}, \quad \mathbf{x}(0)=\mathbf{x}_{0} \tag{7}
\end{equation*}
$$

is given by
$>$

$$
\begin{equation*}
\mathbf{x}(t)=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}(0)^{-1} \mathbf{x}_{0} . \tag{8}
\end{equation*}
$$

THEOREM 2 Matrix Exponential Solutions

If \mathbf{A} is an $n \times n$ matrix, then the solution of the initial value problem
$>$

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{A x}, \quad \mathbf{x}(0)=\mathbf{x}_{0} \tag{26}
\end{equation*}
$$

is given by
>

$$
\begin{equation*}
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}, \tag{27}
\end{equation*}
$$

and this solution is unique.

Today: Solutions to nonhomogeneous systems

$$
\begin{gathered}
x^{\prime}=A x+f(t) \\
x^{\prime}=P(t) x+f(t)
\end{gathered}
$$

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)
$$

Principle of superposition:

THEOREM 4 Solutions of Nonhomogeneous Systems
Let \mathbf{x}_{p} be a particular solution of the nonhomogeneous linear equation in (47) on an open interval I on which the functions $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous. Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ be linearly independent solutions of the associated homogeneous equation on I. If $\mathbf{x}(t)$ is any solution whatsoever of Eq. (47) on I, then there exist numbers $c_{1}, c_{2}, \ldots, c_{n}$ such that
$>\quad \mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)+\mathbf{x}_{p}(t)$
for all t in I.

This means we just have to find one particular solution \mathbf{x}_{p}.
Then the general solution is $\mathbf{x}=\mathbf{x}_{c}+\mathbf{x}_{p}$, where \mathbf{x}_{c} is the general homogeneous solution.

Two methods to find a particular solution:

- Method of undetermined coefficients
- Variation of parameters

Example: method of undetermined coefficients
Example 1 Find a particular solution of the nonhomogeneous system

$$
\begin{aligned}
& \text { awes } \\
& \vec{x}_{p}(t)=\left[\begin{array}{l}
a_{1} t+b_{1} \\
a_{2} t+b_{2}
\end{array}\right] .
\end{aligned}
$$

Sub into (3):

$$
\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
7 & 5
\end{array}\right]\left[\begin{array}{l}
a_{1} t+b_{1} \\
a_{2} t+b_{2}
\end{array}\right]+\left[\begin{array}{c}
3 \\
2 t
\end{array}\right] .
$$

$$
w t+Y
$$

$$
\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
3 a_{1} t+3 b_{1}+2 a_{2}+2+2 b_{2}+3 \\
7 a_{1}+7+7 b_{1}+5 a_{2}++5 b_{2}+2 f
\end{array}\right]
$$

$$
\begin{cases}\begin{array}{l}
a_{1}=3 b_{1}+2 b_{2}+3 \\
a_{2}=7 b_{1}+5 b_{2}
\end{array} & \text { Then save this. } \\
0=3 a_{1}+2 a_{2} & b_{1}=17, b_{2}=-25 . \\
0=7 a_{1}+5 a_{2}+2 & \text { Solve this first. } \\
0=4 & a_{1}=4 \\
a_{2}=-6\end{cases}
$$

So $x_{p}=\left[\begin{array}{l}4 t+17 \\ -6 t-25\end{array}\right]$.

General sold is

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)
$$

Principle of superposition:

THEOREM 4 Solutions of Nonhomogeneous Systems

Let \mathbf{x}_{p} be a particular solution of the nonhomogeneous linear equation in (47) on an open interval I on which the functions $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous. Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ be linearly independent solutions of the associated homogeneous equation on I. If $\mathbf{x}(t)$ is any solution whatsoever of Eq. (47) on I, then there exist numbers $c_{1}, c_{2}, \ldots, c_{n}$ such that
$>\quad \mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)+\mathbf{x}_{p}(t)$
for all t in I.

This means we just have to find one particular solution \mathbf{x}_{p}.
Then the general solution is $\mathbf{x}=\mathbf{x}_{c}+\mathbf{x}_{p}$ where \mathbf{x}_{c} is the general homogeneous solution.

Two methods to find a particular solution:

- Method of undetermined coefficients
- Variation of parameters

Example: method of undetermined coefficients

Example 1 Find a particular solution of the nonhomogeneous system

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
3 & 2 \\
7 & 5
\end{array}\right] \mathbf{x}+\left[\begin{array}{r}
3 \\
2 t
\end{array}\right]
$$

To solve

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)
$$

We assume that we have already found the fundamental matrix to the homogeneous equation, $\boldsymbol{\Phi}(t)$

$$
x^{\prime}=P(f) x
$$

Therefore the general homogeneous solution is $\mathbf{x}_{c}=\boldsymbol{\Phi}(t) \mathbf{c}$

$$
\phi^{\prime}=P(f) \phi
$$

unknown vector function.
Then we guess $\mathbf{x}_{p}=\Phi(t) \widehat{\mathbf{u}(t)}$, and see what constraints on $\mathbf{u}(t)$ come up.
(Then solve for u, hence get x_{p})

$$
\begin{aligned}
& x_{p}^{\prime}=\phi^{\prime}(t) u(t)+\phi(t) u^{\prime}(t) \\
& \text { So plugging in: } \\
& \begin{aligned}
\phi^{\prime}(t) u(t)+\phi(t) u^{\prime}(t) & =P(t) \phi(t) u(t)+f(t) \\
& =\phi^{\prime}(t) u(t)+f(t)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \phi(t) u^{\prime}(t)=f(t) \\
& \Rightarrow \quad u^{\prime}(t)=\phi(f)^{-1} f(t) .
\end{aligned}
$$

$$
\Rightarrow u(t)=\int \phi(t)^{-1} f(t) d t .
$$

$$
\Rightarrow \quad x_{p}(t)=\phi(t) \int \phi(f)^{-1} f(t) d t
$$

$$
\begin{aligned}
& \int t e^{-7 t} d t=A t e^{-7 t}+B e^{-7 t}=\frac{-1}{7} t e^{-7 t}+\frac{1}{49} e^{-7 t} \\
& \left(A t e^{-7 t}+B e^{-7 t}\right)^{\prime}=A e^{-7 t}+A t(-7) e^{-7 t}+-7 B e^{-7 t}
\end{aligned}
$$

THEOREM 1 Variation of Parameters
If $\boldsymbol{\Phi}(t)$ is a fundamental matrix for the homogeneous system $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on some interval where $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous, then a particular solution of the nonhomogeneous system

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)
$$

is given by

$$
\begin{equation*}
\mathbf{x}_{p}(t)=\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}(t)^{-1} \mathbf{f}(t) d t \tag{22}
\end{equation*}
$$

Example 4 Solve the initial value problem $f(t)$

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
4 & 2 \tag{30}\\
3 & -1
\end{array}\right] \mathbf{x}-\left[\begin{array}{r}
15 \\
4
\end{array}\right] t e^{-2 t}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
7 \\
3
\end{array}\right]
$$

Note: in previous lectures we found the two solutions to the homogeneous equation,

$$
\mathbf{x}_{1}=\binom{1}{-3} e^{-2 t} \text { and } \mathbf{x}_{2}=\binom{2}{1} e^{5 t} . \quad x^{\prime}=\left[\begin{array}{cc}
4 & 2 \\
3 & -1
\end{array}\right] x
$$

* Fundamental matrix:

$$
\begin{aligned}
\phi(t) & =\left[\begin{array}{cc}
e^{-2 t} & 2 e^{5 t} \\
-3 e^{-2 t} & e^{5 t}
\end{array}\right] \\
x \phi(t)^{-1} & =\frac{1}{\operatorname{det} \phi(t)}\left[\begin{array}{cc}
e^{8 t} & -2 e^{5 t} \\
3 e^{-2 t} & e^{-2 t}
\end{array}\right] \\
& =\frac{1}{7 e^{3 t}}\left[\begin{array}{lc}
e^{8 t} & -2 e^{5 t} \\
3 e^{-2 t} & e^{-2 t}
\end{array}\right]
\end{aligned}
$$

So

$$
\begin{aligned}
& x_{p}(t)=\left[\begin{array}{ll}
e^{22} & 2 e^{51} \\
-3 e^{-2 t} & e^{5 t}
\end{array}\right] \int \frac{1}{7 e^{3 t}}\left[\begin{array}{l}
-15 t e^{3 t}+8 t e^{3 t} \\
-45 t e^{-4 t}-4 t e^{-4 t}
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{ll}
e^{-2 t} & 2 e^{5 t} \\
-3 e^{-2 t} & e^{5 t}
\end{array}\right] \int\left[\begin{array}{ll}
-15 t & +8 t \\
-45 t e^{-7 t} & -4 t e^{-7 t}
\end{array}\right] d t \\
& =\frac{1}{7}\left[\begin{array}{l}
e^{2 t} \\
-3 e^{-2 t} \\
2 t
\end{array} e^{5 t}\right] \int\left[\begin{array}{c}
-7 t \\
-446 t^{7 t}
\end{array}\right] d t \\
& =\frac{1}{7}\left[\begin{array}{cc}
e^{2 t} & 2 e^{5 t} \\
-3 e^{-2 t} & e^{5 t}
\end{array}\right]\left[\begin{array}{c}
-\frac{7 t^{2}}{2} \\
7 t e^{-7 t}+e^{-7 t}
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{l}
e^{-2 t}\left(-\frac{2}{2}\right) t^{2}+14 t e^{-2 t}+2 e^{-2 t} \\
21 t^{2} \\
\frac{2}{2} e^{-2 t}+7 t e^{-2 t}+e^{-2 t}
\end{array}\right]=\frac{1}{7} e^{-2 t}\left[\begin{array}{l}
-\frac{7 t^{2}}{2}+14 t+2 \\
\frac{21 t^{2}}{2}+7 t+1
\end{array}\right]
\end{aligned}
$$

General solution is

$$
x=c_{1}\left[\begin{array}{c}
e^{-2 t} \\
-3 e^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 e^{5 t} \\
e^{5 t}
\end{array}\right]+\frac{1}{7} e^{-2 t}\left[\begin{array}{c}
-\frac{7 t^{2}}{2}+14 t+2 \\
\frac{1 t^{2}}{2}+7 t+1
\end{array}\right]
$$

$$
\begin{aligned}
x(0) & =\left[C_{1}\left[\begin{array}{c}
1 \\
-3
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\frac{1}{7}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
7 \\
3
\end{array}\right]\right. \\
& \Rightarrow\left[\begin{array}{l}
c_{1}+2 c_{2}+2 c_{7}=7 \\
-3 c_{1}+c_{2}+5 / 7
\end{array}\right]
\end{aligned}
$$

THEOREM 1 Variation of Parameters

If $\boldsymbol{\Phi}(t)$ is a fundamental matrix for the homogeneous system $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on some interval where $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous, then a particular solution of the nonhomogeneous system

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)
$$

is given by
$>$

$$
\begin{equation*}
\mathbf{x}_{p}(t)=\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}(t)^{-1} \mathbf{f}(t) d t \tag{22}
\end{equation*}
$$

Solve the initial value problem

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
4 & 2 \\
3 & -1
\end{array}\right] \mathbf{x}-\left[\begin{array}{r}
15 \\
4
\end{array}\right] t e^{-2 t}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
7 \\
3
\end{array}\right] .
$$

Note: in previous lectures we found the two solutions to the homogeneous equation,

$$
\mathbf{x}_{1}=\binom{1}{-3} e^{-2 t} \text { and } \mathbf{x}_{2}=\binom{2}{1} e^{5 t}
$$

