
Lecture 24 - May 3 2021

MAT303: Calc IV with applications
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Plan

Recently: Solutions homogeneous constant coefficient systems:  Today: Solutions to nonhomogeneous systems

x′ = Ax + f(t)

x Pct x a f t
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Superposition principle

Principle of superposition:

This means we just have to find one particular solution  

Then the general solution is 

where  is the general homogeneous solution.

xp .
x = xc + xp

xc

x′ = P(t)x + f(t)

Two methods to find a particular solution:  
• Method of undetermined coefficients

• Variation of parameters
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Undetermined coefficients

Principle of superposition:

This means we just have to find one particular solution  

Then the general solution is 

where  is the general homogeneous solution.

xp .
x = xc + xp

xc

x′ = P(t)x + f(t)

Two methods to find a particular solution:  
• Method of undetermined coefficients

• Variation of parameters

Example: method of undetermined coefficients 
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Variation of parameters

x′ = P(t)x + f(t)

To solve 

We assume that we have already found  
the fundamental matrix to the homogeneous equation, Φ(t)

Then we guess , and see what constraints on  come up.xp = Φ(t)u(t) u(t)

Therefore the general homogeneous solution is  xc = Φ(t)c
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Example
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Note: in previous lectures we found the two solutions to the homogeneous equation,  

  and x1 = ( 1
−3) e−2t x2 = (2

1) e5t .
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Example
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Note: in previous lectures we found the two solutions to the homogeneous equation,  

  and x1 = ( 1
−3) e−2t x2 = (2

1) e5t .


