MAT303: Calc IV with applications

Lecture 24 - May 3 2021

Recently: Solutions homogeneous constant coefficient systems:

THEOREM 1 Fundamental Matrix Solutions

Let $\Phi(t)$ be a fundamental matrix for the homogeneous linear system $\mathbf{x}' = \mathbf{A}\mathbf{x}$. Then the [unique] solution of the initial value problem

>	$\mathbf{x}' = \mathbf{A}\mathbf{x}, \mathbf{x}(0) = \mathbf{x}_0$	(7)
is given by		
>	$\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{\Phi}(0)^{-1}\mathbf{x}_0.$	(8)

THEOREM 2 Matrix Exponential Solutions

If **A** is an $n \times n$ matrix, then the solution of the initial value problem

$$\mathbf{x}' = \mathbf{A}\mathbf{x}, \qquad \mathbf{x}(0) = \mathbf{x}_0 \tag{26}$$

is given by

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0,\tag{27}$$

and this solution is unique.

Today: Solutions to nonhomogeneous systems

$$\begin{aligned} \mathbf{x}' &= \mathbf{A}\mathbf{x} + \mathbf{f}(t) \\ \mathbf{x}' &= \mathbf{P}(\mathbf{t}) \times \mathbf{t} \quad \mathbf{P}(\mathbf{t}) \end{aligned}$$

Superposition principle

Example: method of undetermined coefficients		
Example 1 Find a particular solution of the nonhomogeneous system		
$\mathbf{x}' = \begin{bmatrix} 3 & 2\\ 7 & 5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 3\\ 2t \end{bmatrix}. \tag{3}$		
A + f(t)		
$\vec{\mathcal{K}}_{p}(t) = \begin{bmatrix} a_{1} t + b_{1} \\ a_{2} t + b_{2} \end{bmatrix}.$		
Sub into (3): W++ (
$ \begin{bmatrix} \alpha_{i} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix} \begin{bmatrix} \alpha_{i} + \epsilon b_{i} \\ \alpha_{2} \ell + \delta_{2} \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \ell \end{bmatrix} $		
$\begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} 3a_{1}t + 3b_{1} + 2a_{2}t + 2b_{2} + 3 \\ 7a_{1}t + 7b_{1} + 5a_{2}t + 5b_{2} + 2f \end{bmatrix}.$		
$a_{t} = 3b_{1} + 2b_{2} + 3$ $a_{2} = 7b_{1} + 5b_{2}$ $0 = 3a_{t} + 2a_{2}$ $0 = 7a_{t} + 5a_{2} + 2$ $a_{t} = 4$ $a_{2} = -6$		
$\kappa_{p} = \begin{bmatrix} 4+47\\-4-25 \end{bmatrix}.$		
heneral solution $x^2 = x_2 + x_p$		
general homogeneous solor.		

3

Undetermined coefficients

 $\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{f}(t)$

Principle of superposition:

THEOREM 4 Solutions of Nonhomogeneous Systems

Let \mathbf{x}_p be a particular solution of the nonhomogeneous linear equation in (47) on an open interval *I* on which the functions $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous. Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ be linearly independent solutions of the associated homogeneous equation on *I*. If $\mathbf{x}(t)$ is any solution whatsoever of Eq. (47) on *I*, then there exist numbers c_1, c_2, \dots, c_n such that

 $\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) + \dots + c_n \mathbf{x}_n(t) + \mathbf{x}_p(t)$ (49) for all t in I.

This means we just have to find one particular solution \mathbf{X}_p .

Then the general solution is $\mathbf{x} = \mathbf{x}_c + \mathbf{x}_p$

where \mathbf{x}_c is the general homogeneous solution.

Two methods to find a particular solution:

Method of undetermined coefficients

Variation of parameters

Example: method of undetermined coefficients

Example 1 Find a particular solution of the nonhomogeneous system

 $\mathbf{x}' = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 3 \\ 2t \end{bmatrix}$

 $\Phi(t) = [\kappa_1(t) \quad \kappa_2(t), -- \kappa_n(t)].$

Variation of parameters

To solve

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{f}(t)$$

We assume that we have already found \checkmark the fundamental matrix to the homogeneous equation, $\Phi(t)$

Therefore the general homogeneous solution is $\mathbf{x}_c = \mathbf{\Phi}(t)\mathbf{c}$

consists of the

linearly indepent

 $x' = P(4) \times$

 $\phi' = P(f)\phi$

Then we guess $\mathbf{x}_p = \Phi(t)\mathbf{u}(t)$, and see what constraints on $\mathbf{u}(t)$ come up.

(Then solve for U, hence get xp)

$$\chi_p' = \phi(t) u(t) + \phi(t) u(t)$$

So plagging: 1:

$$\dot{\phi}(t)a(t) + \dot{\phi}(t)u'(t) = P(t)\phi(t)u(t) + f(t)$$

 $= \phi'(t)u(t) + f(t)$

$$\Rightarrow \phi(t)u'(t) = f(t) \Rightarrow u'(t) = \phi(t)^{-1} f(t) . \Rightarrow u(t) = \int \phi(t)^{-1} f(t) dt. \Rightarrow \gamma(t) = \phi(t) \int \phi(t)^{-1} f(t) dt.$$

THEOREM 1 Variation of Parameters

If $\Phi(t)$ is a fundamental matrix for the homogeneous system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ on some interval where $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous, then a particular solution of the non-homogeneous system

 $\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{f}(t)$

is given by

$$\mathbf{x}_{p}(t) = \mathbf{\Phi}(t) \int \mathbf{\Phi}(t)^{-1} \mathbf{f}(t) dt.$$
(22)

2)

Example

THEOREM 1 Variation of Parameters

If $\Phi(t)$ is a fundamental matrix for the homogeneous system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ on some interval where $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous, then a particular solution of the non-homogeneous system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{f}(t)$

is given by

$$\mathbf{x}_{p}(t) = \mathbf{\Phi}(t) \int \mathbf{\Phi}(t)^{-1} \mathbf{f}(t) dt.$$
⁽²⁾

Example 4 Solve the initial value problem

$$\mathbf{x}' = \begin{bmatrix} 4 & 2\\ 3 & -1 \end{bmatrix} \mathbf{x} - \begin{bmatrix} 15\\ 4 \end{bmatrix} t e^{-2t}, \quad \mathbf{x}(0) = \begin{bmatrix} 7\\ 3 \end{bmatrix}. \quad (30)$$

Note: in previous lectures we found the two solutions to the homogeneous equation,

x'=[42]x e^{-2t} and $\mathbf{x}_2 = \mathbf{x}_2$ e^{5t} . $\mathbf{x}_1 =$ ~ Fundamental matrix. φ(t)= [e⁻²⁴ 2e⁵⁴] est est × ¢(€)_ = e-2+ det off) $=\frac{1}{7e^{34}}$ -24

$$\begin{aligned} & \sum_{k=1}^{50} \\ & \sum_{k=1}^{1} \left[\sum_{k=1}^{1} \sum_{k=1}^{1} \left[\sum_{k=1}^{1} \sum_{k=1}^{1} \left[\sum_{k=1}^{1} \sum_{k=1}^{1} \left[\sum_{k=1}^{1} \sum_{j=1}^{1} \sum_{k=1}^{1} \sum_{j=1}^{1} \sum_{k=1}^{1} \sum_{j=1}^{1} \sum_{k=1}^{1} \sum_{j=1}^{1} \sum_{k=1}^{1} \sum_{j=1}^{1} \sum_{k=1}^{1} \sum_{j=1}^{1} \sum_{k=1}^{1} \sum_{k=1}^{1} \sum_{k=1}^{1} \sum_{j=1}^{1} \sum_{k=1}^{1} \sum_{k=1}$$

THEOREM 1 Variation of Parameters

If $\Phi(t)$ is a fundamental matrix for the homogeneous system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ on some interval where $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous, then a particular solution of the non-homogeneous system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{f}(t)$

is given by

$$\mathbf{x}_{p}(t) = \mathbf{\Phi}(t) \int \mathbf{\Phi}(t)^{-1} \mathbf{f}(t) \, dt.$$
(22)

Example 4 Solve the initial value problem

 $\mathbf{x}' = \begin{bmatrix} 4 & 2\\ 3 & -1 \end{bmatrix} \mathbf{x} - \begin{bmatrix} 15\\ 4 \end{bmatrix} t e^{-2t}, \quad \mathbf{x}(0) = \begin{bmatrix} 7\\ 3 \end{bmatrix}.$ (30)

Note: in previous lectures we found the two solutions to the homogeneous equation,

 $\mathbf{x}_1 = \begin{pmatrix} 1 \\ -3 \end{pmatrix} e^{-2t} \text{ and } \mathbf{x}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{5t}.$