MAT303: Calc IV with applications

Lecture 23 - April 28 2021



Last time: Matrix exponentials
* Review matrix inverses

¢ Fundamental matrix solutions

- Solve for all initial conditions ‘simultaneously
* Matrix Exponentials as matrix solutions

* Especially easy to compute when the matrix is nilpotent
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Today:

* More examples of matrix exponentials

- How to compute them if the matrix is not nilpotent?
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Today
Using matrix exponential to solve DEs

1. Rewrite in matrix form x’ = Ax
2. Find eA!

3. Solutionis X = eA’XO where X, is the initial condition.
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Fundamental Solutions as Matrix Exponentials
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Check that the method works (all the columns are solutions to the DE);
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> If A" = 0 for some n, the matrix is said to be nilpotent.
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We just saw that it is easy to compute e’ when A is nilpotent.
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We’ve just seen that computing e is useful for solving systems of DEs.
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Here are some facts that help us compute Al

Definition of matrix exponential:
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Nilpotent A : Just use the definition, it will be a finite sum because Aﬁ’ eventually.
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Useful facts about e’

Commutativity: If AB = BA, then ¢A1B = ¢AcB
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Inverse of exponential: (eA)
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Computing ¢’ when matrix is a sum of a diagonal and nilpotent matrix.

Suppose det (£-AT)= @'7'5& .
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Fact: whenever a matrix A only has one eigenvalue 4, we
can always write A = Al + (A — A1)
and the first term is always diagenal and the second term is
always nilpotent. AL

Thus, when a matrix only has one eigenvalue, we can easily
compute e as in this example.



Recall (from last lecture)

THEOREM 2 Matrix Exponential Solutions

If A is an n x n matrix, then the solution of the initial value problem

> X =Ax,  x(0)=x (26)
is given by
> x(t) = eA'xg, @7

and this solution is unique.

SLCIlERE  Use an exponential matrix to solve the initial value problem
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Using this to solve initial value problems
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Another example, same one we did last lecture using a different metho<g° S

METEITEN  Find s eneral solution ofthe system
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Using this to solve initial value problems

We see that there is only one eigenvalue 4 = 4, so
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Solving DEs to find matrix exponentials

We have, from last lecture:
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THEOREM 1 Fundamental Matrix Solutions
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Let ®(z) be a fundamental matrix for the homogeneous linear system x’ = Ax. 6(}) é (6-) = — ( ) =
Then the [unique] solution of the initial value problem 3
> X = Ax, x(0) = Xo @ ) -

is given by
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THEOREM 2 Matrix Exponential Solutions

If A is an n x n matrix, then the solution of the initial value problem

> X = Ax, x(0) = xo (26)
is given by Summary: we have seen that matrix exponentials can be used to solve DEs.
Al
o x() @"0' @7 However, we only know how to compute matrix exponentials for some matrices.

and this solution is unique. . . . . .
We can go the other direction and solve DEs to find matrix exponentials.




Summary

Today:
* More examples of matrix exponentials.
- How to compute them if the matrix is not nilpotent?
- We see that it is easy as long as A=diagonal + nilpotent
- Actually whenever A only has one eigenvalue, we can write it as
d-#a;e%al + nilpotent.

» We see that we can use DE solutions to find matrix exponentials.

Eigenvalue method

1. Rewrite in matrix form X’ = Ax

2. Use the guess x = Ve’“, get the eigenvalue problem Av = v
3. Find the eigenvalues

1. Form the characteristic polynomial det(A — AI) = 0
2. The roots of this polynomial are the eigenvalues A

4. Find the eigenvectors corresponding to each 1
5. Write down the solutions, solve for initial conditions if applicable.

Using matrix exponential to solve DEs

1. Rewrite in matrix form x’ = Ax
2. Find eA!

3. Solutionis x = e
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