MAT303: Calc IV with applications

Lecture 23 - April 282021

Last time: Matrix exponentials

- Review matrix inverses
- Fundamental matrix solutions
- Solve for all initial conditions 'simultaneously'.
- Matrix Exponential as matrix solutions
- Especially easy to compute when the matrix is nilpotent.

Today:

$$
A^{n}=0 \text { eventually. }
$$

Using matrix exponential to solve DEs

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
2. Find $e^{\mathbf{A} t}$
3. Solution is $\mathbf{x}=e^{\mathbf{A} t} \mathbf{x}_{0}$ where \mathbf{x}_{0} is the initial condition.

- More examples of matrix exponentials.
- How to compute them if the matrix is not nilpotent?

Useful facts about $e^{\mathbf{A} t}$

We've just seen that computing $e^{\mathbf{A} t}$ is useful for solving systems of DEs.
Here are some facts that help us compute $e^{\mathbf{A} t}$.

$$
e^{A t}=\left[\begin{array}{ccc}
e^{t} & 0 & 0 \\
0 & e^{4 t} & 0 \\
0 & 0 & e^{7 t}
\end{array}\right]
$$

Definition of matrix exponential:

$$
\begin{array}{ll}
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} \frac{t^{2}}{2!}+\cdots+\mathbf{A}^{n} \frac{t^{n}}{n!}+\cdots . & \\
& \mathbf{A}^{n}=0
\end{array}
$$

Nilpotent A: Just use the definition, it will be a finite sum because χ^{n} eventually.

Diagonal A: if A is diagonal, $A=\left[\begin{array}{llll}\lambda_{1} & & & \\ & \ddots & & \\ & & & \\ & & \lambda_{n}\end{array}\right]$ (zero off the diagonal)

$$
e^{A t}=\left[\begin{array}{lll}
e^{\lambda, t} & & \\
& \ddots & \\
& & e^{\lambda, t}
\end{array}\right]
$$

So $e^{A t}=\left[\begin{array}{lll}1 & & \\ \cdots & 1\end{array}\right]+\left[\begin{array}{lll}\lambda, t & & \\ & \ddots & \\ & & \lambda_{\Delta}\end{array}\right]+\left[\begin{array}{ll}\frac{\lambda_{1}^{2} t^{2}}{21} & \\ & \\ & \\ & \\ & \\ \lambda_{n}^{2} t^{2}\end{array}\right]+\cdots$

Commutativity: If $\mathbf{A B}=\mathbf{B A}$, then $e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}}$.
Just like $e^{x+y}=e^{x} e^{y}$.
(See problem 31 in Ch 5.6).
Exponential of zero matrix: $e^{0}=\mathbf{I}$.

$$
\begin{aligned}
& \vec{O}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \vec{e}=\underline{T}=\left(\begin{array}{ll}
1 & \ddots
\end{array}\right)
\end{aligned}
$$

Inverse of exponential: $\left(e^{\mathbf{A}}\right)^{-1}=e^{-\mathbf{A}}$
Why?

$$
\begin{aligned}
& e^{A+(-A)}=e^{0}=I \\
& \text { So } e^{A} \cdot e^{-A}=I \Rightarrow e^{-A}=\left(e^{A}\right)^{-1}
\end{aligned}
$$

Correction May 4:
This is not true.
What I meant to say is
that " λI commutes with all other matrices".
E.g. $[1,2]$ is diagonal but not of the form

Suppose

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=(\lambda-2)^{2} \\
A=\left[\begin{array}{ll}
2 & 3 \\
0 & 4 \\
0 & 6 \\
0 & 0
\end{array} 2\right.
\end{gathered}
$$

Let's compute $e^{A t}$.

$$
A=\underbrace{\left[\begin{array}{lll}
2 & & \\
& 2 & \\
& & 2
\end{array}\right]}_{2 I}+\underbrace{\left[\begin{array}{lll}
0 & 3 & 4 \\
0 & 0 & 6 \\
0 & 0 & 0
\end{array}\right]}_{B} .
$$

So

$$
\begin{aligned}
& e^{A t}=e^{(2 I+B) t}=e^{(2 I t}+B t \\
& =e^{2 I t} e^{B t} \\
& =\left(e^{2 t} e^{2 t} e^{2 t}\right)\left(I+B t+\frac{B^{2} t^{2}}{2!}+\cdots\right) .
\end{aligned}
$$

B is nilipoteat:

$$
\begin{aligned}
& B^{2}=\left(\begin{array}{ccc}
0 & 0 & 18 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& B^{3}=0 .
\end{aligned}
$$

So .

$$
=e^{2 t}\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 3 t & 4 t+a t^{2} \\
0 & 1 & 6 t \\
0 & 0 & 1
\end{array}\right)
$$

$$
=e^{2 t}\left(\begin{array}{ccc}
1 & 3 t & 4+9 t^{2} \\
0 & 1 & 6 t \\
0 & 0 & 1
\end{array}\right)
$$

Fact: whenever a matrix \mathbf{A} only has one eigenvalue λ, we can always write $\mathbf{A}=\lambda \mathbf{I}+(\mathbf{A}-\lambda \mathbf{I})$ and the first term is always diagonal and the second term is always nilpotent.

Thus, when a matrix only has one eigenvalue, we can easily compute $e^{\mathbf{A} t}$ as in this example.

Recall (from last lecture)
THEOREM 2 Matrix Exponential Solutions
If \mathbf{A} is an $n \times n$ matrix, then the solution of the initial value problem
is given by
($\quad \mathbf{\mathbf { x } ^ { \prime }}=\mathbf{A x}, \quad \mathbf{x}(0)=\mathbf{x}_{0}$
($(t)=e^{\mathbf{A} t} \mathbf{x}_{0}$,
and this solution is unique.

Use an exponential matrix to solve the initial value problem

$$
\mathbf{x}^{\prime}=\underbrace{\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 2 & 6 \\
0 & 0 & 2
\end{array}\right]}_{A}, x(0)=\left[\begin{array}{l}
19 \\
29 \\
39
\end{array}\right] .
$$

From last slide,

$$
e^{A t}=e^{2 t}\left(\begin{array}{ccc}
1 & 3 t & 4 t \\
0 & 1 & 6 t \\
0 & 0 & 1
\end{array}\right)
$$

So sole is

$$
\begin{aligned}
& x(t)=e^{2 t}\left(\begin{array}{ccc}
1 & 3 t & 4 t+9 t^{2} \\
0 & 1 & 6 t \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
19 \\
29 \\
39
\end{array}\right) \\
& x(t)=e^{2 t}\left(\begin{array}{c}
19+87 t+136 t+351 t^{2} \\
29+234 t \\
39
\end{array}\right)
\end{aligned}
$$

$$
(A+3 I)^{2} v_{2}=0
$$

Another example, same one we did last lecture using a different method: $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) v_{2}=0$

$$
\operatorname{det}(A-\lambda I)=(\lambda-4)^{2}
$$

Only 1 eigenvalue of A is $\lambda=4$.
Only eigenvector is $v=\binom{1}{-1}$.
So eigenvalue is defective with multiplicity 2.
io find general solution,

$$
\underset{\Phi}{\left.\dot{x_{2}}(t)=\binom{-3}{3} t+\binom{1}{0}\right) e^{4 t}}
$$

* Unlike in (i), you will oort always get O comberauts. But you will yet
ondeterdetermined system. undeterdetermined system.
$V_{1}=(A-X 1) v_{2}=\left(\begin{array}{cc}-3 & -3 \\ 3 & 3\end{array}\right)(0)=\binom{-3}{3}$
(2) The 2 linearly dependent sols
corresponding to $\lambda=4$
$\vec{x}_{1}(t)=\left(-\frac{3}{3}\right)^{4+1}, \quad \vec{x}_{2}(t)=\left(v_{1} t+v_{2}\right) e^{4 t}$

We see that there is only one eigenvalue $\lambda=4$, so
$B=A-4 I=\left(\begin{array}{rr}-3 & -3 \\ 3 & 3\end{array}\right)$ is nilpotert.

$$
B^{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

So

$$
\begin{aligned}
& e^{A t}=e^{4 I t+(A-4 I) t}=e^{4 I t+B t} \\
& =e^{4 I t} e^{B t} \\
& =\left(e^{4 t} e^{4 t}\right)\left(I+B t+\frac{B^{2} t^{2}}{2!}+\ldots\right) \\
& =\left(\begin{array}{ll}
e^{4 t} & \\
& e^{x t}
\end{array}\right)\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
-3 & -3 \\
3 & 3
\end{array}\right) t\right) \\
& =\left(\begin{array}{ll}
e^{4 f} & \\
& e^{4 t}
\end{array}\right)\left(\begin{array}{cc}
1-3 t & -3 t \\
3 t & 1+3 t
\end{array}\right)
\end{aligned}
$$

$$
e^{f t}=\left(\begin{array}{cc}
\frac{(1-3 t) e^{4 t}}{3 t} e^{4 t} \\
3 t e^{4 t} & (1+3 t) e^{4 t}
\end{array}\right)
$$

So sols to any IUP is

$$
x(f)=\left(\begin{array}{cc}
(1-3 t) e^{4 t} & -3 t e^{4 t} \\
3 t e^{4 t} & (1+3 t)^{4 t}
\end{array}\right) \vec{x}_{0}
$$

We have, from last lecture:

$$
\underline{\Phi}(t)=\left[\vec{x}_{1}(f) \cdots \vec{x}_{n}(t)\right] .
$$

THEOREM 1 Fundamental Matrix Solutions
Let $\boldsymbol{\Phi}(t)$ be a fundamental matrix for the homogeneous linear system $\mathbf{x}^{\prime}=\mathbf{A x}$. Then the [unique] solution of the initial value problem
$>$

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}_{0} \tag{7}
\end{equation*}
$$

is given by
$>$

$$
\begin{equation*}
\mathbf{x}(t)=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}(0)^{-1} \cdot \mathbf{x}_{0} . \tag{8}
\end{equation*}
$$

THEOREM 2 Matrix Exponential Solutions

If \mathbf{A} is an $n \times n$ matrix, then the solution of the initial value problem

$$
\begin{equation*}
>\quad \mathbf{x}^{\prime}=\mathbf{A x}, \quad \mathbf{x}(0)=\mathbf{x}_{0} \tag{26}
\end{equation*}
$$

is given by
$>$

$$
\begin{equation*}
\mathbf{x}(t)=e^{\mathbf{A} t}\left[\mathbf{x}_{0},\right. \tag{27}
\end{equation*}
$$

$$
\begin{aligned}
& \Phi(t)=\left(\begin{array}{cc}
-3 e^{4 t} & (-3 t+1) e^{4 t} \\
3 e^{4 t} & 3 t e^{4 t}
\end{array}\right) \Phi(0)=\left(\begin{array}{cc}
-3 & 1 \\
3 & 0
\end{array}\right) \Rightarrow \Phi(0)^{-1}=\frac{-1}{3}\left(\begin{array}{cc}
0 & -3 \\
-1 & -3
\end{array}\right) \\
& \Phi(f) \Phi(0)^{-1}=-\frac{1}{3}\left(\begin{array}{l}
(1-3 t) e^{4 t}
\end{array}\right.
\end{aligned}
$$

Therefore:

$$
\Phi(t) \Phi(0)^{-1}=e^{A t}
$$

Summary: we have seen that matrix exponential can be used to solve BEs.

However, we only know how to compute matrix exponential for some matrices.

We can go the other direction and solve BEs to find matrix exponentials.

Today:

- More examples of matrix exponentials.
- How to compute them if the matrix is not nilpotent?
- We see that it is easy as long as A=diagonal + nilpotent
- Actually whenever A only has one eigenvalue, we can write it as λI diagonat + nilpotent.
- We see that we can use DE solutions to find matrix exponentials.

Eigenvalue method

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
2. Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
3. Find the eigenvalues
4. Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
5. The roots of this polynomial are the eigenvalues λ
6. Find the eigenvectors corresponding to each λ
7. Write down the solutions, solve for initial conditions if applicable.

Using matrix exponential to solve DEs

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
2. Find $e^{\mathbf{A} t}$
3. Solution is $\mathbf{x}=e^{\mathbf{A} t} \mathbf{x}_{0}$
