# MAT303: Calc IV with applications

Lecture 22 - April 26 2021

#### **Recently:**

- Eigenvalue method for  $x^\prime = A x$ 
  - Still need to finish off case of defective eigenvalues (missing solutions).

## Today: Ch S.G.

- · Review matrix inverses
- · Fundamental matrix solutions
  - Solve for all initial conditions 'simultaneously'.
- · Matrix Exponentials as fundamental matrix solutions

#### **Eigenvalue method**

- 1. Rewrite in matrix form  $\mathbf{x}' = \mathbf{A}\mathbf{x}$
- 2. Use the guess  $\mathbf{x} = \mathbf{v}e^{\lambda t}$ , get the eigenvalue problem  $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$
- 3. Find the eigenvalues
  - 1. Form the characteristic polynomial  $det(\mathbf{A} \lambda \mathbf{I}) = 0$
  - 2. The roots of this polynomial are the eigenvalues  $\lambda$
- 4. Find the eigenvectors corresponding to each  $\lambda$ 
  - 1. Some complications if the eigenvalue is defective (not enough eigenvectors)
- 5. Write down the solutions, solve for initial conditions if applicable.

## Finding more solutions when there are defective eigenvalues

| Let's start with the multiplicity $k = 2$ case, it's the simplest.                                                                                                                                                                                                                                                                                                                                   | We find that the constraint on $\mathbf{y}_2$ is $(\mathbf{A}-\lambda I)^2\mathbf{v}_2=0$                                                  |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Situation:<br>• We are trying to solve $\mathbf{x}' = \mathbf{A}\mathbf{x}$<br>• The matrix $\mathbf{A}$ has an eigenvalue $\lambda$ of multiplicity 2 (repeated root)<br>• The eigenvalue $\lambda$ is defective (only 1 linearly independent eigenvector $\mathbf{v}_1$ instead of 2).<br>• So we only have one solution, $\mathbf{x}_1 = \mathbf{v}_1 e^{\lambda t}$ .<br>• Need to find another. | Note: once we find $\mathbf{v}_2$ then $\mathbf{v}_1 = (\mathbf{A} - \lambda I)\mathbf{v}_2$ .                                             |                |
| Solution: global $x_2 = v_1 v_2 v_3 v_2 v_3 v_3 v_3 v_3 v_3 v_3 v_3 v_3 v_3 v_3$                                                                                                                                                                                                                                                                                                                     | <ul> <li>ALGORITHM Defective Multiplicity 2 Eigenvalues</li> <li>1. First find a nonzero solution v<sub>2</sub> of the equation</li> </ul> |                |
|                                                                                                                                                                                                                                                                                                                                                                                                      | $(\mathbf{A} - \lambda \mathbf{I})^2 \mathbf{v}_2 = 0 \tag{10}$                                                                            | 5)             |
|                                                                                                                                                                                                                                                                                                                                                                                                      | such that                                                                                                                                  |                |
|                                                                                                                                                                                                                                                                                                                                                                                                      | $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v}_2 = \mathbf{v}_1 \tag{1}$                                                                     | 7)             |
|                                                                                                                                                                                                                                                                                                                                                                                                      | is nonzero, and therefore is an eigenvector $\mathbf{v}_1$ associated with $\lambda$ .<br>2. Then form the two independent solutions       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                      | $\mathbf{x}_1(t) = \mathbf{v}_1 e^{\lambda t} \tag{13}$                                                                                    | 3)             |
|                                                                                                                                                                                                                                                                                                                                                                                                      | and                                                                                                                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                      | $\mathbf{x}_2(t) = (\mathbf{v}_1 t + \mathbf{v}_2)e^{\lambda t} \tag{19}$                                                                  | <del>)</del> ) |
|                                                                                                                                                                                                                                                                                                                                                                                                      | of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ corresponding to $\lambda$ .                                                                       |                |
|                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                            |                |

Example of the algorithm

## Ch 5.6 Exponential Matrices and Fundamental Matrix Solutions

Matrix Inverses

$$let I = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 identify  

$$IA = A = AI$$

$$IA = A = AI$$

$$ret A be a square$$

$$matrix. Inverse to A is$$

$$He matrix A^{-1} such that$$

$$A^{-1}A = AA^{-1} = \overline{1}.$$

$$eromptei:$$

$$\begin{bmatrix} 1 & 2 & 1 & -2 & -2 \\ 1 & 3 & 1 & -2 & -2 & -2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & 6 & +1 & -2 & +2 \\ -3 & 3 & -2 & -2 & +2 & +2 \\ -3 & 3 & -2 & -2 & +2 & +2 \\ -3 & 3 & -2 & -2 & +2 & +2 \\ -3 & 3 & -2 & -2 & +2 & +2 \\ -3 & 3 & -2 & -2 & +2 & +2 \\ -3 & 4 & -2 & +2 & +2 & +2 \\ -3 & 4 & -2 & +2 & +2 & +2 \\ -3 & -3 & -2 & +2 & +2 & +2 \\ -3 & -3 & -2 & +2 & +2 & +2 \\ -3 & -3 & -2 & +2 & +2 & +2 \\ -3 & -3 & -2 & +2 & +2 & +2 \\ -3 & -3 & -2 & +2 & +2 & +2 \\ -3 & -3 & -2 & +2 & +2 & +2 \\ -3 & -3 & -2 & +2 & +2 & +2 \\ -3 & -3 & -2 & +2 & +2 & +2 \\ -3 & -3 & -2 & +2 & +2 & +2 & +2 \\ -3 & -3 &$$

### Matrix Inverses

Usefal for solving linear  
systems:  

$$\begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix} \implies \begin{bmatrix} c_1 + 2c_2 = 1 \\ -3c_1 + c_2 = 1 \end{bmatrix}$$
  
Multiply both sides by  $\begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix}^{-1}$  (on the left)  
 $\begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$   
 $\implies \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ 1 \end{bmatrix}$   
 $\implies \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$   
 $\implies \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ 1 \end{bmatrix}$   
 $\implies \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ 1 \end{bmatrix}$   
 $\implies \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ -3 & 1$ 

Initial Value Problem examples general soln: Suppose we want to find the solution of the following initial value problem え= く、デ+く、デ x' = 4x + 2y, $= \begin{bmatrix} \vec{x}_1 & \vec{x}_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c \end{bmatrix}$ y' = 3x - y, Solve for ICs:  $x(0) = 1, \quad y(0) = 1.$  $\vec{x}(o) = [\vec{x}(o) \quad \vec{x}(v)] \cdot \begin{bmatrix} c_v \\ c_v \end{bmatrix} = \begin{bmatrix} v \\ v \end{bmatrix}$ We know how to find the general solution now:  $\begin{bmatrix} e^{2L} & 2e^{5L} \\ -3e^{2L} & Ie^{5L} \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} =$  $= \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ c_1 \end{bmatrix}$ 1. Rewrite in matrix form  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ So  $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \begin{bmatrix} c_1 \\$ 2. Use the guess  $\mathbf{x} = \mathbf{v}e^{\lambda t}$ , get the eigenvalue problem  $\mathbf{A}\mathbf{v} = \begin{cases} C e^{-2t} + 2c_2e^{5t} \\ -3C e^{2t} + C e^{2t} \end{cases}$ 3. Find the eigenvalues 1. Form the characteristic polynomial det( $\mathbf{A} - \lambda \mathbf{I}$ ) = 0 sola to IVP is 2. The roots of this polynomial are the eigenvalues  $\lambda$ 4. Find the eigenvectors corresponding to each  $\lambda$ 5. Write down the solutions, solve for initial conditions.  $\left[\overrightarrow{x_1} \quad \overrightarrow{x_2}\right].$ -4  $\vec{X}_1 = \begin{bmatrix} 1 e^{2t} \\ -3e^{2t} \end{bmatrix}$  and  $\vec{X}_2 = \begin{bmatrix} 2e^{5t} \\ 1e^{5t} \end{bmatrix}$ .

7 3 1

 $\vec{x} = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ 



Insight: The IVP solution can be written as a product of a matrix and a vector.

=



**Definition:** Let  $x_1, ..., x_n$  be *linearly independent* solutions the system x' = Ax.

Let  ${f \Phi}$  be the matrix formed by taking  ${f x}_i$  as the columns.

Then  $\Phi$  is said to be a <u>fundamental matrix</u> for the system.

#### **THEOREM 1** Fundamental Matrix Solutions

Let  $\Phi(t)$  be a fundamental matrix for the homogeneous linear system  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ . Then the [unique] solution of the initial value problem

$$\mathbf{x}' = \mathbf{A}\mathbf{x}, \quad \mathbf{x}(0) = \mathbf{x}_0 \tag{7}$$

is given by

$$\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{\Phi}(0)^{-1}\mathbf{x}_0.$$
 (8)

The previous example, summarized with this new vocabulary:

$$x' = 4x + 2y,$$

$$y' = 3x - y,$$

$$\overline{\Box}(f) = \begin{bmatrix} \overline{x}, & \overline{x}_2 \end{bmatrix} = \begin{bmatrix} e^{2t} & 2e^{5t} \\ -3e^{2t} & 1e^{5t} \end{bmatrix}$$

$$\overline{\Box}(0) = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix}$$
So colu to IVP 75
$$\overline{X}(t) = \begin{bmatrix} \overline{x}, & \overline{x}_2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix} \quad \overline{X}_0.$$

$$(First example : \overline{Y}_0 = \begin{bmatrix} 1 \\ -3 \end{bmatrix} \quad \overline{X}_0.$$

$$(First example : \overline{Y}_0 = \begin{bmatrix} 1 \\ -3 \end{bmatrix} \quad \overline{X}_0.$$

Takeaway: We can solve the system for all initial conditions, all at once. Just compute  $\Phi(t)\Phi(0)^{-1}.$ 

### Fundamental Solutions as Matrix Exponentials

It turns out that there's another, conceptually cleaner way to view fundamental solutions.

Also, this can sometimes lead to a much quicker computation.

It is inspired by the following fact:

The solution to x' = ax is  $x(t) = e^{at}x(0)$ .

Explanation:  
Solu is 
$$r(t) = e^{at} C$$

THEOREM 2 Matrix Exponential SolutionsIf A is an  $n \times n$  matrix, then the solution of the initial value problem $\blacktriangleright$  $\mathbf{x}' = A\mathbf{x}$ ,  $\mathbf{x}(0) = \mathbf{x}_0$  (26)is given by $\blacktriangleright$  $\mathbf{x}(t) = e^{At}\mathbf{x}_0$ , (27)and this solution is unique.

This doesn't make sense yet, because what does  $e^{At}$  mean???

Recall: 
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Similarly, we define

$$e^{\mathbf{A}t} = \mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2!} + \dots + \mathbf{A}^n \frac{t^n}{n!} + \dots$$

Looks complicated because it's an infinite sum, but there are some tricks that can help

Fundamental Solutions as Matrix Exponentials

Find solution to IVP 
$$\vec{X} = \vec{A} \cdot \vec{X}$$
  
where  

$$A = \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{bmatrix},$$
and  $\vec{X}(0) = \vec{X}_{0}.$   

$$\vec{A}^{4} = I + \vec{A}t + \vec{A}^{2}\frac{t^{2}}{2!} + \cdots -$$

$$\vec{A}^{2} = \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 6 \end{bmatrix} \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 6 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1^{4}b \\ 0 & 0 & 6 \end{bmatrix},$$

$$\vec{A}^{3} = \vec{A}^{2} \cdot \vec{A}^{2} = \begin{bmatrix} 0 & 0 & 1^{4}b \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 6 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1^{4}b \\ 0 & 0 & 5 \end{bmatrix},$$

$$\vec{A}^{3} = \vec{A}^{2} \cdot \vec{A}^{2} = \begin{bmatrix} 0 & 0 & 1^{4}b \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1^{4}b \\ 0 & 0 & 5 \end{bmatrix}$$

$$\vec{A}^{3} = \vec{A}^{2} \cdot \vec{A}^{2} = \begin{bmatrix} 0 & 0 & 1^{4}b \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

So 
$$\overrightarrow{A}^{k} = 0$$
 for  $k \ge 3$ .  
So  
 $e^{\overrightarrow{R} + =} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{bmatrix} 0 & 3 & 4 \\ 0 & 0 & 8 \end{bmatrix} + + \begin{bmatrix} 0 & 0 & 1^{4} \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\$ 

If  $A^n = 0$  for some *n*, the matrix is said to be nilpotent. We just saw that it is easy to compute  $e^{At}$  when *A* is nilpotent.

#### **Recently:**

- Eigenvalue method for  $x^\prime = A x$ 

#### Today:

- · Review matrix inverses
- Fundamental matrix solutions
  - Solve for all initial conditions 'simultaneously'.
- · Matrix Exponentials as matrix solutions
  - Especially easy to compute when the matrix is nilpotent.

## Next fine.

- More examples of matrix exponentials.
  - How to compute them if the matrix is not nilpotent?

#### **Eigenvalue method**

- 1. Rewrite in matrix form  $\mathbf{x}' = \mathbf{A}\mathbf{x}$
- 2. Use the guess  $\mathbf{x} = \mathbf{v}e^{\lambda t}$ , get the eigenvalue problem  $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$
- 3. Find the eigenvalues
  - 1. Form the characteristic polynomial  $det(\mathbf{A} \lambda \mathbf{I}) = 0$
  - 2. The roots of this polynomial are the eigenvalues  $\lambda$
- 4. Find the eigenvectors corresponding to each  $\lambda$
- 5. Write down the solutions, solve for initial conditions if applicable.

Using matrix exponential to solve DEs

1. Rewrite in matrix form  $\mathbf{x}' = \mathbf{A}\mathbf{x}$ 2. Find  $e^{\mathbf{A}t}$ 3. Solution is  $\mathbf{x} = e^{\mathbf{A}t}\mathbf{x}_0$