MAT303: Calc IV with applications

Lecture 21 - April 212021

Last time:

- Linear independence of solutions (Finish Ch 5.1)
- Eigenvalue method (Ch 5.2)
- Distinct real eigenvalues

Today:

- Eigenvalue method
- Distinct complex eigenvalues (Ch 5.2)
- Repeated eigenvalues (Ch 5.3)

Eigenvalue method

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
2. Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
3. Find the eigenvalues degree u poly
4. Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
5. The roots of this polynomial are the eigenvalues λ
6. Find the eigenvectors corresponding to each λ
7. Write down the solutions, use initial conditions if applicable.

Recall: Euler's identity

$$
e^{i x}=\cos (x)+i \sin (x)
$$

Recall: Complex roots of polynomials appear in conjugate pairs
If $p+q i$ is a root of a polynomial with real coefficients, then $p-q i$ is also a root.

Recall: Superposition principle

$$
\text { If } \mathbf{x}_{1}, \mathbf{x}_{2} \text { are solutions to } \mathbf{x}^{\prime}=\mathbf{A} \mathbf{x} \text {, then so is }
$$

$$
c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

Recall: Complex conjugation

$$
\text { If } z=p+q i \text { then } \bar{z}=p-q i
$$

Recall: if

$$
\begin{aligned}
& x=a+b i \\
& R_{e}(x)=a \\
& \operatorname{ran}(x)=b
\end{aligned}
$$

Node: $\frac{1}{2}(x+\bar{x})=\frac{1}{2}(a+b ;+a-b i)=a$.

Another fact: complex eigenvectors appear in pairs
If \mathbf{v} is the eigenvector of \mathbf{A} corresponding to eigenvalue λ Then \mathbf{v} is the eigenvector of \mathbf{A} corresponding to eigenvalue $\bar{\lambda}$

In other words,
If $\mathbf{A v}=\lambda \mathbf{v}$
then $\mathbf{A} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}$

$$
\text { E.g. if } \begin{aligned}
\vec{v} & =\left[\begin{array}{l}
1 \\
i
\end{array}\right] \\
\vec{\nabla} & =\left[\begin{array}{c}
1 \\
-i
\end{array}\right] .
\end{aligned}
$$

Consequence:
if \vec{x} is a complex solution to the $D E \quad \vec{x}=\vec{A} \vec{x}$,
then $\operatorname{Re}[\vec{x}]$ and $\operatorname{lm}(\vec{x})$. are real solutions.

Why? \vec{x} and $\overrightarrow{\vec{x}}$ are solutions, So $\frac{1}{2} \vec{x}+\frac{1}{2} \overline{\vec{x}}$ is a solution. set this is $\operatorname{Re}(\vec{x})$.
We can use these facts deal with the case when there are complex eigenvalues.

Example 3 Find a general solution of the system

$$
\begin{align*}
& \frac{d x_{1}}{d t}=4 x_{1}-3 x_{2} \tag{23}\\
& \frac{d x_{2}}{d t}=3 x_{1}+4 x_{2}
\end{align*}
$$

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
2. Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
3. Find the eigenvalues
4. Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
5. The roots of this polynomial are the eigenvalues λ
6. Find the eigenvectors corresponding to each λ
7. Write down the solutions. if sols are complese, turn flem into real ones by Labeling veal and imacyinaing pools.
(1) $\vec{x}^{\prime}=\left[\begin{array}{cc}4 & -3 \\ 3 & 4\end{array}\right] \vec{x}$
(2) $\left[\begin{array}{cc}4 & -3 \\ 3 & 4\end{array}\right] \vec{v}=\lambda \rightarrow$
(3)

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
4-\lambda & -3 \\
3 & 4-\lambda
\end{array}\right)=(4-\lambda)^{2}+9 \\
& \Rightarrow(4-\lambda)^{2}=-9 \Rightarrow 4-\lambda= \pm 3 i \\
& \Rightarrow \lambda=4 \pm 3 i
\end{aligned}
$$

(4) Find eigenvectors:

$$
\begin{aligned}
\lambda= & 4-3 i: \\
& {\left[\begin{array}{cc}
4 & -3 \\
3 & 4
\end{array}\right]\left[v_{2}\right.} \\
& \left\{\begin{array}{l}
4 v_{1}-3 v_{2}=(4-3 i)\left[\begin{array}{c}
v_{2} \\
v_{2}
\end{array}\right] \\
3 v_{1}+4 v_{2}=(4-3 i) u_{2}
\end{array}\right. \\
\Rightarrow & \left\{\begin{array} { l }
{ 3 i v _ { 1 } - 3 v _ { 2 } = 0 } \\
{ 3 v _ { 1 } + 3 i v _ { 2 } = 0 . }
\end{array} \Rightarrow \left\{\begin{array}{l}
i v_{1}-v_{2}=0 \\
v_{1}+i v_{2}=0
\end{array}\right.\right.
\end{aligned}
$$

Second a u is redundant, the only constraint is $\dot{v}_{2}=i v$, so eigenvector is $\left[\begin{array}{l}y_{i} \\ i i_{1}\end{array}\right]$.
Just take $v_{1}=1$, so $\left[\begin{array}{c}1 \\ 1\end{array}\right]$.
(If $v_{2}=2, \quad$ get $\left[\begin{array}{c}2 \\ 2 i \\ 2 i\end{array}\right)$.
doesn't matter.

$$
\lambda=4+3 i
$$

Corresponding eigenvector is $\left[\frac{1}{c}=\right]$.
become- fact .. prev slide.
(5)

$$
\begin{aligned}
& x=\left[\begin{array}{l}
1 \\
i
\end{array}\right] e^{(4-3 i) t}=\left[\begin{array}{l}
1 \\
i
\end{array}\right] e^{4 t} e^{-3 i t} \\
&=\left[\begin{array}{l}
1 \\
i
\end{array}\right] e^{4 t(\cos 3 t-i \sin (3 t))} \\
&=e^{c 4 t}\left[\begin{array}{l}
\cos 3 t-i \sin 3 t \\
i \cos 3 t+\sin (3 t)
\end{array}\right] . \\
& a \operatorname{sol}(.
\end{aligned}
$$

is a sole.
So $x_{1}=R(x)=e^{4 t}\left[\begin{array}{c}\cos 3 t \\ \sin (3 t)\end{array}\right]$

$$
x_{2}=\operatorname{lm}(x)=e^{s t}[-\sin 3 t]
$$

General sola is $C_{1} e^{s t}\left[\begin{array}{c}\cos 3 t \\ \sin (3 t)\end{array}\right]+C_{2} e^{s t}\left[\begin{array}{c}-\sin 3 t \\ \cos 3 t\end{array}\right]_{4}$

$$
\begin{align*}
& \frac{d x_{1}}{d t}=4 x_{1}-3 x_{2}, \\
& \frac{d x_{2}}{d t}=3 x_{1}+4 x_{2} . \tag{23}
\end{align*}
$$

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A x}$
2. Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
3. Find the eigenvalues
4. Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
5. The roots of this polynomial are the eigenvalues λ
6. Find the eigenvectors corresponding to each λ

- If complex, pair up conjugates and use Euler's identity to get real solutions

5. Write down the solutions

Recall: Euler's identity

$e^{i x}=\cos (x)+i \sin (x)$
Recall: Complex roots of polynomials appear in conjugate pairs
If $p+q i$ is a root of a polynomial with real coefficients, then $p-q i$ is also a root.
Recall: Superposition principle
If $\mathbf{x}_{1}, \mathbf{x}_{2}$ are solutions to $\mathbf{x}^{\prime}=\mathbf{A x}$, then so is $\mathbf{x}_{1}+\mathbf{x}_{2}$.
Recall: Complex conjugation
If $z=p+q i$ then $\bar{z}=p-q i$.
Another fact: complex eigenvectors appear in pairs
If \mathbf{v} is the eigenvector of \mathbf{A} corresponding to eigenvalue λ
Then \mathbf{v} is the eigenvector of \mathbf{A} corresponding to eigenvalue $\bar{\lambda}$

Last time: we saw that

$$
\frac{d \mathbf{x}}{d t}=\left[\begin{array}{ll}
4 & -3 \\
6 & -7
\end{array}\right] \mathbf{x}=\mathbf{P} \mathbf{x}
$$

Has two solutions:

$$
\mathbf{x}=\left[\begin{array}{l}
3 e^{2 t} \\
2 e^{2 t}
\end{array}\right] \quad \text { and } \quad \tilde{\mathbf{x}}=\left[\begin{array}{c}
e^{-5 t} \\
3 e^{-5 t}
\end{array}\right]
$$

And we can take linear combinations to get new solutions:

$$
\mathbf{x}=c_{1}\left[\begin{array}{c}
e^{-5 t} \\
3 e^{-5 t}
\end{array}\right]+c_{2}\left[\begin{array}{l}
3 e^{2 t} \\
2 e^{2 t}
\end{array}\right]
$$

We could choose c_{1} and c_{2} to match initial conditions $\mathbf{x}(0)=a, \quad \mathbf{x}^{\prime}(0)=b$

THEOREM 3 General Solutions of Homogeneous Systems

Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ be n linearly independent solutions of the homogeneous linear equation $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on an open interval I, where $\mathbf{P}(t)$ is continuous. If $\mathbf{x}(t)$ is any solution whatsoever of the equation $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on I, then there exist numbers c_{1}, c_{2}, \ldots, c_{n} such that

$$
\begin{equation*}
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t) \tag{35}
\end{equation*}
$$

for all t in I.

Takeaway: for a $n \times n$ linear system, once we find n linearly independent solutions, we have essentially found them 'all'.

Repeated eigenvalues (Ch 5.5)

Example 1 Find a general solution of the system
(1) $x^{\prime}=\underbrace{\left[\begin{array}{ccc}9 & 4 & 0 \\ -6 & -1 & 0 \\ 6 & 4 & 3\end{array}\right]}_{A} x$
(2) $\vec{A} \vec{v}=\lambda \vec{v}$
(3)

$$
\begin{aligned}
\operatorname{def}(1-\lambda I) & =\operatorname{det}\left(\begin{array}{ccc}
a-\lambda & 4 & 0 \\
-6 & -1 & 0 \\
0
\end{array}\right) \\
& =(5-\lambda)(3-\lambda)^{2}
\end{aligned}
$$

$$
\text { So eggs are } \lambda=5,3 \text {. }
$$

(4) Finding eigenvector:
of $\vec{x}=5, \vec{v}=\left[\begin{array}{l}i \\ 1 \\ 1\end{array}\right]$.
if $\lambda=3$:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=3\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]} \\
& \left\{\begin{aligned}
a_{u_{1}}+4 v_{2} & =3 v_{1} \\
-6 v_{1}-v_{2} & =3 v_{2} \\
6 v_{1}+4 v_{2}+3 v_{3} & =3 v_{3} .
\end{aligned}\right.
\end{aligned}
$$

$$
\left\{\begin{aligned}
6 u_{1}+4 v_{2} & =0 \\
-6 v_{1}-4 v_{2} & =0 \leftarrow \text { redundant. } \\
6 v_{1}+4 J_{2} & =0
\end{aligned}\right. \text { redumbaut. }
$$

Only constraint: $\quad v_{2}=-\frac{3}{2} u$
So all the sold are of
So all the sold ane of

$$
c_{1}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] e^{5 t}+c_{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{3 t}+c_{3}\left[\begin{array}{c}
\text { independent } \\
-3 c_{2}
\end{array}\right] e^{3 t}
$$

We are always be looking for n linearly independent eigenvectors, to make sure we have found all solutions.

If an eigenvalue of multiplicity k has k linearly independent eigenvectors, it is said to be complete.

3 is a complete eigenvalue.
However, when there are repeated roots, there are sometimes there are not enough linearly independent eigenvectors...

You should always be looking for n linearly independent eigenvectors.
However, sometimes there are not enough linearly independent eigenvectors...
The following matrix only has one eigenvector.
Example 2
The matrix

$$
A=\left[\begin{array}{cc}
1 & -3 \tag{8}\\
3 & 7
\end{array}\right]
$$

Cheractenersti- polynomial:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{cc}
1-\lambda & -7 \\
3 & 7-\lambda
\end{array}\right) \\
& =(1-\lambda x-\lambda)+9 \\
& =\lambda^{2}+7-7 \lambda-\lambda+9 \\
& =\lambda^{2}-8 \lambda+16 \\
& =(k-4)^{2}
\end{aligned}
$$

Fig is 4.
Find eiguect:

$$
\lambda=4: \quad\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
4 v_{1} \\
4 v_{2}
\end{array}\right]
$$

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
v_{1}-3 v_{2}=4 v_{1} \\
3 u_{1}+7 v_{2}=4 v_{2}
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
-3 u_{1}-3 v_{2}=0 \\
3 u_{1}+3 v_{2}=0 . \leftarrow \text { redundant } \\
\Rightarrow v_{2}=-v_{1}
\end{array}\right.
\end{aligned}
$$

So sols are

$$
\binom{v_{1}}{-v_{1}}=v_{1}\binom{1}{-1}
$$

Every eigenvector is a multiple of $\binom{1}{-1}$.
4 is not complete.
4 is a defective eigenvalue.

Let's start with the multiplicity $k=2$ case, it's the simplest.

Situation:

- We are trying to solve $\mathbf{x}^{\prime}=\mathbf{A x}$
- The matrix \mathbf{A} has an eigenvalue λ of multiplicity 2 (repeated root)
- The eigenvalue λ is defective (only 1 linearly independent eigenvector \mathbf{v}_{1} instead of 2).
- So we only have one solution, $\mathbf{x}_{1}=\mathbf{v}_{1} e^{\lambda t}$.
- Need to find another.

Solution: guess $\mathbf{x}_{2}=\mathbf{v}_{1} t e^{\lambda t}+\mathbf{v}_{2} e^{\lambda t} \quad$ where \mathbf{v}_{2} is unknown.
Then, plugging rato $\vec{x}=\vec{A} \vec{x}$,

$$
\begin{aligned}
& \text { giving } \\
& v_{1}\left(e^{7 t}+t \lambda e^{\lambda t}\right)+v_{2} \lambda e^{\lambda t}=A\left(v_{1} t e^{\lambda t}+v_{2} e^{\lambda t}\right) \\
& v_{1} e^{\lambda t}+\lambda v_{1} t e^{\lambda t}+\underline{v}_{2} \lambda e^{\lambda t}-A v_{1} t e^{\lambda t}+A v_{2} e^{\lambda t} \\
& \rightarrow\left\{\begin{array}{l}
v_{1}+v_{2} \lambda=A v_{2} \Rightarrow(A-\lambda I) v_{2}=v_{1} \\
\cdot A v_{1}=A v_{1} \Rightarrow(A-\lambda I) v_{1}=(0)
\end{array}\right.
\end{aligned}
$$

We find that the constraint on \mathbf{v}_{2} is $(\mathbf{A}-\lambda I)^{2} \mathbf{v}_{2}=0$

Note: once we find \mathbf{v}_{2} then $\mathbf{v}_{1}=(\mathbf{A}-\lambda I) \mathbf{v}_{2}$.
Mutely (1) by $(A-\lambda I)$

$$
\Rightarrow(A-\lambda I)^{2} v_{2}=(A-\lambda I) v_{1}=0
$$

ALGORITHM Defective Multiplicity 2 Eigenvalues

1. First find a nonzero solution \mathbf{v}_{2} of the equation

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I})^{2} \mathbf{v}_{2}=\mathbf{0} \tag{16}
\end{equation*}
$$

such that

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{2}=\mathbf{v}_{1} \tag{17}
\end{equation*}
$$

is nonzero, and therefore is an eigenvector \mathbf{v}_{1} associated with λ.
2. Then form the two independent solutions

$$
\begin{equation*}
\mathbf{x}_{1}(t)=\mathbf{v}_{1} e^{\lambda t} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{x}_{2}(t)=\left(\mathbf{v}_{1} t+\mathbf{v}_{2}\right) e^{\lambda t} \tag{19}
\end{equation*}
$$

of $\mathbf{x}^{\prime}=\mathbf{A x}$ corresponding to λ.

Example 3 Find a general solution of the system
$\mathbf{x}^{\prime}=\left[\begin{array}{rr}1 & -3 \\ 3 & 7\end{array}\right] \mathbf{x}$.

Today:

- Eigenvalue method
- Distinct complex eigenvalues (Ch 5.2)
- Just use Euler's formula + superposition
- Repeated eigenvalues (Ch 5.3)
- If the eigenvalues are defective, must look for generalized eigenvectors
- We only did multiplicity $k=2$, but the same thing works for higher multiplicity.

