MAT303: Calc IV with applications

Lecture 21 - April 21 2021



Today

Last time:
* Linear independence of solutions (Finish Ch 5.1)
* Eigenvalue method (Ch 5.2)

« Distinct real eigenvalues

Today:
* Eigenvalue method
 Distinct complex eigenvalues (Ch 5.2)

* Repeated eigenvalues (Ch 5.3)

Eigenvalue method Axun

-

. Rewrite in matrix form X’ = Ax

. Use the guess x = Ve’“, get the eigenvalue pro&lem Av = v
. Find the eigenvalues

1. Form the characteristic polynomial det(A — AI) = 0
2. The roots of this polynomial are the eigenvalues A

. Find the eigenvectors corresponding to each A
. Write down the solutions, use initial conditions if applicable.



Recall: Euler’s identity
e™ = cos(x) + i sin(x)
Recall: Complex roots of polynomials appear in conjugate pairs

If p + gi is aroot of a polynomial with real coefficients, then p — gi is also a root.

Recall: Superposition principle
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If X, X, are solutions to X" = AX, then so is

Recall: Complex conjugation

fz=p+qgithenZ =p —qi.
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Complex eigenvalues

Another fact: complex eigenvectors appear in pairs

If v is the eigenvector of A corresponding to eigenvalue 4

Then v is the eigenvector of A corresponding to eigenvalue 1
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We can use these facts deal with the case when there are complex eigenvalues.



PEZIEEN  Find a general solution of the system

dxy
a =4x1 — 3x2,
(23)
dxy
= 3x1 + 4x3.

1. Rewrite in matrix form X’ = Ax
2. Use the guess X = ve*, get the eigenvalue problem Av = Av
3. Find the eigenvalues
1. Form the characteristic polynomial det(A — AI) = 0
2. The roots of this polynomial are the eigenvalues 4
4. Find the eigenvectors corresponding to each A
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Complex eigenvalues in the eigenvalue method
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Complex eigenvalues in the eigenvalue method

PETOTEEEN  Find a general solution of the system

da

a =4x1 — 3x2,
(23)
% =3x1 + 4x3.

1. Rewrite in matrix form X’ = Ax
2. Use the guess X = ve?, get the eigenvalue problem Av = Av
3. Find the eigenvalues

1. Form the characteristic polynomial det(A — AI) = 0

2. The roots of this polynomial are the eigenvalues 4
4. Find the eigenvectors corresponding to each 1

 If complex, pair up conjugates and use Euler’s identity

to get real solutions

5. Write down the solutions

Recall: Euler’s identity
€™ = cos(x) + i sin(x)
Recall: Complex roots of polynomials appear in conjugate pairs

If p+ gi is aroot of a polynomial with real coefficients, then p — gi is also a root.

Recall: Superposition principle

If X,, X, are solutions to X' = AX, then sois X; + X.

Recall: Complex conjugation
Ifz=p+githenZ=p — gi.
Another fact: complex eigenvectors appear in pairs

If vis the of A ing to i
Then v is the of A ing to ei
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Matrices

Last time: we saw that

dx _[4 -3
dt — |6 -7

Has two solutions:
3€2t e—St
X = and X =
2621 3e—Sr
And we can take linear combinations to get new solutions:

_ e—Sr 362[
X = [Se_S’ +c 262[

We could choose ¢; and ¢, to match initial conditions Xx(0) = a, x'(0) =b

THEOREM 3 General Solutions of Homogeneous Systems

Let X1, Xz, ..., X, be n linearly independent solutions of the homogeneous linear
equation x’ = P(¢)x on an open interval /, where P(¢) is continuous. If x(¢) is any
solution whatsoever of the equation x’ = P(#)x on 7, then there exist numbers c1,

¢, ..., Cp such that
x(t) = c1X1(t) + c2Xa(t) + -+ + cnXn ()

forall¢in 1.

(35)

Takeaway: for a n X n linear system, once we find n linearly independent solutions,

we have essentially found them ‘all’.



Repeated eigenvalues (Ch 5.5)



m Find a general solution of the system

Repeated eigenvalues in the eigenvalue method
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We are always be looking for n linearly independent eigenvectors, to
make sure we have found all solutions
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If an eigenvalue of multiplicity k has k linearly independent eigenvectors
it is said to be complete
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However, when there are repeated roots, there are

s

sometimes there are not enough linearly independent eigenvectors



You should always be looking for 7 linearly independent eigenvectors.

However, sometimes there are not enough linearly independent eigenvectors...

The following matrix only has one eigenvector.
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Defective eigenvalues
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Finding more solutions when there are defective eigenvalues

Let’s start with the multiplicity k = 2 case, it’s the simplest.

Situation:

+ We are trying to solve X’ = Ax

» The matrix A has an eigenvalue A of multiplicity 2 (repeated root)

- The eigenvalue A is defective (only 1 linearyy independent eigenvector v, instead of 2).
+ So we only have one solution, X; = vlex’.

* Need to find another.

Solution: guess X, = v,te* + v,e*
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where v, is unknown.
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We find that the constraint on v, is (A — /1[)2V2 =0

Note: once we find v, then v; = (A — Al)v,.

Mokgly 0 by 23D
2 (A-AD) ver (D). =0

ALGORITHM Defective Multiplicity 2 Eigenvalues
1. First find a nonzero solution v, of the equation

A-AD%v; =0
such that

(A=ADv, =v;

is nonzero, and therefore is an eigenvector v, associated with A.

2. Then form the two independent solutions
X1 (1) = vie*
and

X(t) = (it + va)e!

of X’ = Ax corresponding to A.

2)

(16)

an

18)

19)



m Find a general solution of the system

(20)

Example of the algorithm



Summary

Today:
» Eigenvalue method
* Distinct complex eigenvalues (Ch 5.2)
» Just use Euler’s formula + superposition
* Repeated eigenvalues (Ch 5.3)
« If the eigenvalues are defective, must look for generalized eigenvectors

» We only did multiplicity k = 2, but the same thing works for higher multiplicity.




