MAT303: Calc IV with applications

Lecture 20 - April 19 2021



Today

Last time:

* Seeing how matrix notation helps us represent systems more compactly

* Basic application of row reduction to solve for coefficients in initial value problems

¢ Principle of superposition

x1 = pu®)x1 + pra(®)x2 + -+
x5 = pa1(t)x1 + paa(t)xz + -+
x4 = pa1(t)x1 + pa2()x2 + -+

X, = pm (X1 + paa()x2 + -+

Today:

+ P (®)xn + fi(0),
+ pan(®xn + f2(0),
+ pan()xn + f0),

+ Pan(0)xn + fu(0).

« Linear independence of solutions (Finish Ch 5.1)

* Eigenvalue method (Ch 5.2)

dx
27 ZoPox+
@27 ar () f(t)

Py [0



Recall (lecture 11): linear independence of more than two functions:

DEFINITION Linear Dependence of Functions

The n functions fi, f3, ..., f, are said to be linearly dependent on the interval
I provided that there exist constants ¢y, c3, ..., ¢, not all zero such that
afitcafo+--+enfu=0 @
on I; that is,
c1fi(x) + 2 fo(x) + -+ cn fu(x) =0
forall xin 7.
Example:

Q% x<e” | ef"i e
Lo o

T —lle*~e™) + L =* = .

= _ | e - 6
Example: X\ —l S ¢ \F?_ = <

Linear independence of vectors

Definition for vectors is similar:

Independence and General Solutions

Linear independence is defined in the same way for vector-valued functions as for
real-valued functions (Section 3.2). The vector-valued functions X1, Xa, ..., X, are
linearly dependent on the interval / provided that there exist constants ¢y, ¢, ...,
cn not all zero such that

> cx1(t) + X (t) + -+ X, (1) = 0 (32)

for all ¢ in 7. Otherwise, they are linearly independent. Equivalently, they are

24

Bty dogecdct

27 = 177 = .
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Another way to check linear independence is through the Wronksian, see
textbook.



Comparison: systems vs. single DEs

Last time: we saw that

dx _[4 -3
dt — |6 -7

Has two solutions:
3€2t 5 e—St
X = 7 and X = 5
2e”! 3¢t

And we can take linear combinations to get new solutions:

( superpe siks e~ fng(Q}
-5t 2t
X = [386—&] +c [222’]

We could choose ¢; and ¢, to match initial conditions x(0) = a,

x'(0)=0>b

Compare this to the following single second order equation:

y”—2y’+y=0[)
ok

wes S = e

We can easily find two solutions:

y=¢e' andy = te'

And we can take linear combinations to get new solutions:

y = e’ + cpte!

We could choose ¢; and ¢, to match initial conditions y(0) = a, y'(0) =b

» We know that once we find two linearly independent solutions,
all other solutions are linear combinations.



Matrices

ot

Last time: we saw that s

7

dx [4 -3

d—t= 6 _7]x=Px.

Has two solutions:

[362t:| [ e—St]
X = and X =
2621 36—5r

And we can take linear combinations to get new solutions:

_ 6—51‘ 3621‘
X = [3@‘5’ +c 262[

We could choose ¢; and ¢, to match initial conditions x(0) = a,

x'(0)=0>b

THEOREM 3 General Solutions of Homogeneous Systems

Let X1, Xz, ..., X, be n linearly independent solutions of the homogeneous linear
equation x’ = P(¢)x on an open interval /, where P(¢},is continuous. If x(¢) is any
solution whatsoever of the equation x’ = P(#)x on 7, then there exist numbers ¢y,
¢, ..., Cp such that

X(8) = c1x1(t) + c2X2(t) + -+ + caXn(t) (35)

forall¢in 1.

wx« M—°~'L"7' K.

Takeaway: for a n X n linear system, once we find n linearly independent solutions,
we have essentially found them ‘all’.



Eigenvalue method (Ch 5.2)



'-{'; Cf‘( =)

a.;o"«- 903’* < = Eigenvalue method

b =& . X .
We wish to find solutions (x;, ..., x,,) to the system '—3 a<? 1% | ¢ How to solve this algebraic problem? A@= @’

X1 =anxi + anxz + -+ + aipXn,
xé = day1X1 + AyXy + -+ + ApXy,

X, = anX1 + an2X2 + -+ + AnnXn.

We know from Ch 5.1 that we can write this more compactly as

x = Ax oc &)? E\

\/l Akl
-l; ﬂk— - L 3
A z 5

+ Make the following guess: X = ve”!

~

« Substitute into DE, giving ()\ ;/') e:f\ L = A <'l> Q/& 1

= =

» Therefore v and A solve Av = Av q K’
€ ~N

2

We’ve simplified the problem to an algebraic problem.

This is called an eigenvalue/eigenvector proble& UwLuw«-S,

The A solutions are called eigenvalues of A b.)\«.o._—\—
W W
Sc[d‘E

%or.

The v solutions are called eigenvectors of A

» Use characteristic polynomial




m Find a general solution of the system

x| = 4x1 + 2x2,
!
Xy =3x1 — Xx2.

Solution  The matrix form of the system in (11) is

L/A': [‘f; 3(

4 2
xf=[3 71}(. 12)

1. Guess that solution is of the form x = ve’’. Substitute into (12).

;\7\;}/: [

2. Get an eigenvalue problem.

-—7’_
17 = ANT

A =T S

Example of eigenvalue method
3. Solve the eigenvalue problem.

T 2 —U\ — ’:("\r

Lg "‘(& L\ka - /!\\I(L’I

qos 2o = Av,
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m Find a general solution of the system

x| = 4x1 + 2x2,
!
Xy =3x1 — Xx2.

Solution  The matrix form of the system in (11) is
¥=|* 2|k
3 -1 |"

1. Guess that solution is of the form X = ve*. Substitute into (12).
—_—
2. Get an eigenvalue problem.

3. Solve the eigenvalue problem.

A= -7, VRS

Q.IACX _
a=5, = G

—\

® s

w~J
|

(%S
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Example of eigenvalue method

egquy

e, (Bl
G

¢ Lale’
sroolend Lo

c, [+)e"

1

4. Use eigenvectors to write down solution to the DE.
N - 2k >,~ (
7(.‘ = [ 2 e 21 Q
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It is useful because for all matrices A, we have IA = Al = A .

- o © O
c o o o

The n X n identity matrix is the matrix 1=

-
o O = O
O = O O

0

=1
(=1

To solve the eigenvalue problem Av = 1v, we can first find the eigenvalues by
solving the equation

det(A — A1) =0

C\/\ ﬂL“Eu:Le)-\&{—CL

A A

‘To 'Bnuwmg .

Using characteristic polynomials to find eigenvalues

for the previous example:

1. Make the matrix A — AL

_ X
b= [ 3 & -4 ~
W T L/r\ °
[ B S
- & -A 2
2. Find determinant of A — AI [’3 ’\/‘7‘\_3 -

| (6T (& - A=A — K&

AT N AP e S

3. Solve for roots A.

//Ks "2;S~




Works exactly the same for larger systems:

@ n

G0 >

, X (L‘T, S- 5

X7 = —kixy,

} 141 e, = -3
Xy = kix1 — kaxa, 4 -

X:,;: k2X2—k3X3, l%_: © - 2

"9\,. A=
Rewrite in matrix form R= A

Use the guess X = ve*, get the eigenvalue problem Av = 1v
——

Find the eigenvalues of &

1. Form the characteristic polynomial det(A — AI) = 0
2. The roots of this polynomial are the eigenvalues 4

Find the eigenvectors corresponding to

each 1

Write down the solutions, use initial conditions if applicable.

@ -0.5 0.0 0.0

X' () = 0.5 —-0.25 0.0 |x,
0.0 0.25 —0.2

@KT’(A

A

Using characteristic polynomials to find eigenvalues
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' A= —6.25
k= —0-2,



Works exactly the same for larger systems:

Xy = —k1x1,
kix1 — kaxs,

=
N
Il

X3 = kaxs — kaxs,

. Rewrite in matrix form
. Use the guess x = ve’ !, get the eigenvalue problem Av = v

. Find the eigenvalues

1. Form the characteristic polynomial det(A — AI) = 0

2. The roots of this polynomial are the eigenvalues 1
. Find the eigenvectors corresponding to each A

. Write down the solutions, use initial conditions if applicable.

/&“—,_ N3

éz Wolue) are. A& —b.2S5
CA] 7{57— —6'2.

Using characteristic polynomials to find eigenvalues

®3 A- -3 .
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3 © o ’05
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Summary

Today:
« How to reduce the differential equation X’ = Ax

to the eigenvalue problem Av = Av.
* How to solve the eigenvalue problem for some eigenvalues and eigenvectors.

Actually, sometimes we won’t get n real eigenvectors.
There could be missing solutions, or some them could be complex.

We’ll talk about how to deal with those cases next time. (Ch 5.2, 5.5).




