MAT303: Calc IV with applications

Lecture 2 - February 08 2021



* What is a differential equation
* Why we should study differential equations
* Ch1.1: Differential equations and mathematical models

» Ch1.2: Integrals as solutions to differential equationsé"
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What/why:

* Many processes in the world can be described by their rate of change

* Rate of change <-> derivative

» Equations involving derivatives are differential equations.

« Differential equations allow us to study mathematical models of physical processes.

Today:
« Different ways of interpreting functions and DEs

 Slope field

Advantages of multiple interpretations
* More opportunities to see when DEs are useful
« Easy to reason about general properties of DEs

» Easy to reason about specific DEs

We will see:
¢ Why most DE has infinitely many solutions

* Why adding an initial condition makes it unique

Recall:



First order equation where RHS does not d
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First order equation with initial condition:
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Recall:



Slope fields
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FIGURE 1.34. Slope fieldfory’ =x—y

corresponding to the table of slopes in Fig. 1.3.3.
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Slope field: example
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FIGURE 1.3.5. The solution curve

through (—4, 4).
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Applications of slope fields
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Applications of slope fields
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K L= Ce’ Existence and Uniqueness of solutions
ﬂ}; Example:
Intuitively:

« Differential equations usually have infinitely many solutions dy
C Adding an initial condition usually narrows it down to a unique solution X— = 2y
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The technical statement: LG(_o) \ "‘3 C' \

THEOREM 1 Existence and Uniqueness of Solutions -

Suppose that both the function f(x,y) and its partial derivative D, f(x, y) are
continuous on some rectangle R in the xy-plane that contains the point (a,b)
in its interior. Then, for some open interval / containing the point a, the initial
value problem o

> Y~ e, y@=b ©)
X

has one and only one solution that is defined on the interval 7. (As illustrated in
Fig. 1.3.11, the solution interval I may not be as “wide” as the original rectangle
R of continuity; see Remark 3 below.) af :




