MAT303: Calc IV with applications

Lecture 18 - April 12 2021



Today

So far this class:

* Looking at single differential equations

Rest of the class:

« Systems of differential equations (analogous to systems of algebraic equations)



Consider the system

x'=4x -3y G )
y =6x—"Ty L'z’)

Analogously to algebraic systems, we can try eliminating one of the variables:
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Method 1: Turning a system into a higher order equation
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Consider the constant coefficient linear equation

I > any™ +ay 1yt b ary” v ary +aydl 6} I

We can rewrite this as

Ly
=

where L = a,D" +a, D" "' +a, ,D""%+ .- + a, is an operator

d
where D = d_ is the derivative operator
X

Examples of operator notation:
\
€4 D= t
7 _ «
O°f= 1
a, D= QQ%(

(=) = &' +34.

D= \

“Multiplication” of differential operators
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L\L,f means L(L,f)

Constant coefficient polynomial differential operators are commutative:
l/ 3, L\ = Ly LZ

c- "\
L\ = D *3

L’L = D"' %
Ll = (o) (o) &
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Consider the system
x'=4x -3y

y =6x-"Ty

N
\ 0 meond

We will solve this more systemically, using differential operators.
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Rewrite this as:

—4x+x"+3y=0
—6x+T7y+y =0

Rewrite this as:

(cas D) L3 =0
~6x +{TF Dy =0

Reuwrite this as:

BB

Where (Li=D-4) (1,=3| 1,=-6,

Using PDOs on the previous example

Operate on top equation by L; and bottom equation by L; :

LiLix+ LiLyy =0
LiLyx+LiLy=0

Subtract top equation from bottom:

-0

This is a single variable equation which we can solve.

EDE ey ~ Dy =

CD‘Z"C%D ——Zcbbpb, = (%e\("\ O .
Se 03? 200 —2% oy L&cmw—a
Se l/d“—fv’sbb\/\bvye—,_g‘

e on bk e o b



Using PDOs in general

In the previous example, the key milestone was rewriting the equation in the form

Lix+Lyy=0
Lyx+L;y=0

l/‘ﬁl < Lul.—\_"—o
Layn cly.=O

In general, whenever we can write our system in the form

Lix+ Lyy = fi(t)
Lix+ Ly = (1)

we can do the same trick:

+ Operate on top equation by L; and bottom equation by L, :

LyLix + LyLyy = L fi(D)
LLyx + LiLyy = L f5(t)

Subtract top equation from bottom:

LLyy — LiLyy = L f,(8) — L3 /(D)

This is a single variable equation which we can solve for y.
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+ Operate on top equation by L, and bottom equation by L, :

LiLix+ LLyy = Ly fi()
LyLyx + LyLyy = L, f5(t)

Subtract bottom equation from top:

\L4le — LyLsx = L f(0) = Ly fy (t)j

This is a single variable equation which we can solve for x.

Summary:
The solution to

Lix+ L,y = fi(t)
Lyx + Lyy = f,(0)

is given by solving

& (LyLy = LyLa)x = Ly (1) — Ly f1(0)

\ (LiLy = LiLo)y = Lifo(0) = L3 /i(D) k

and




Example: suppose want to solve the system

xX'—4x+3y=0
—6x+y +7y=0

Rewrite in terms of of differential operators: L/\ {:2_\
Dx—-%>%3y=0o . @’qu*zvk =
b Oty = = gk @Y=
bex 01T =0 SRRy
According to what we just did: \/\‘5 L— Y
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Using PDOs in general
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Summary:

The solution to

Lix+ Ly = £0)
Lyx+ Ly = f(0)

is given by solving

(LyLy = LyLay)x = Ly (1) = Lo f3(1)
and

(LiLy — LsLy)y = L f5(t) — L3 f,(¥)
-



To solve 2x2 linear equation:

ax+by=p
cx+dy=gq

We can use Cramer’s rule:
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Similarity with Cramer’s rule

Summary (to solve 2x2 first order system):
The solution to

Lix+ L,y = fi(t)
Lyx+ Ly = f(0)

is given by solving

(L4Ly — LyLy)x = Ly fo(t) — L, f1 (1)
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(LiLy — LyLy)y = L f5(t) — L3 f1(0)



Summary

Today:
* Solving systems of first order equations by elimination
* Using polynomial differential operators

Next time: Chapter 5.1
+ Better methods for larger systems




