MAT303: Calc IV with applications

Lecture 17 - April 5 2021



Today

So far this class:

* Looking at single differential equations

Rest of the class:

« Systems of differential equations (analogous to systems of algebraic equations)



Systems of equations
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Spring-mass problems

Equilibrium positions

FIGURE 4.1.1. The mass-and-spring
system of Example 1.
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FIGURE 4.1.2. The “free body
diagrams” for the system of Example 1.

) s\'ey« 4»
‘&DEs.

Where would systems of differential equations come up?

Mixing problems

Fresh water

20 gal/min xEy=~ s M N S A

VY({-3=- salt =~ Yoale 2’

20 gal/min

FIGURE 4.1.3. The two brine tanks
of Example 2.
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Aside from the previous applications, systems of differential equations
naturally arise when we consider higher order DEs.

Example: The 3rd order equation
x® L3x > 2x' — 5x = sin2t €
is equivalent to the system of 3 equations
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Reductions to first order system

In general: Any higher order differential equation
can be transformed into a system of first order equations,

by introducing new variables.

Example: The system of 2nd order DEs

2x" = —6x+ 2y
y"=2x—2y+40sin 3¢

is equivalent to the system of 4 first order equations:

X=X
2xy = — 6x; + 2y,
Vi=X
vy = 2x) — 2y, +40sin 3¢
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Solution methods for first order systems

We’ve now seen how systems of first order equations naturally arise:
 Directly from applications

* From (systems of) higher order equations

In the rest of this semester we will look at various methods to solve them.

* Many methods will involve linear algebra/matrices.
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We will solve this without any linear algebra. It relies on what we already know
for second order DEs.

Analogously to algebraic systems, we can try eliminating one of the variables:
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Method 1: Turning a system into a higher order equation
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Changing C changes the amplitude.

Changing a translates the functions:
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Method 1: Turning a system into a higher order equation

Consider the system There is another way to think about the solution.
x'(t) = — 2y(1) ( < \, The state of the system is described by a path (x(r), y(f)) through the plane R>.
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FIGURE 4.1.6. Direction field and
solution curves for the system
x'=-=2y,y = %x of Example 6.
Make sure you understand how this different the direction fields we considered
in Ch1. There is no time axis.
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Consider the system

X/zy

y=2x+y

Analogously to algebraic systems, we can try eliminating one
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Method 1: Turning a system into a higher order equation

Quiz: at (x,y) = (0,2) what is the slope of the direction fﬁiel%’\? o 72
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Phase portrait:
FIGURE 4.1.8. Direction field and
solution curves for the system x’ = y,
y’ =2x + y of Example 7.
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Consider the system

Analogously to algebraic systems, we can try eliminating one of the variables:
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Method 1: Turning a system into a higher order equation

Individual solutions:

<- Only shows one solution
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FIGURE 4.1.10. x- and y-solution
curves for the initial value problem of
Example 8.

Phase portrait:

x <- Shows all solutions,
But doesn’t contain information
about the time parameterization

FIGURE 4.1.9. Direction field and
solution curve for the system x’ = —y,
¥’ = (1.01)x — (0.2)y of Example 8.



Summary

» Systems of first order equations are important because
* They arise naturally in applications
* Any higher order equation can be transformed to such a system
w="7 -
* The solution to a system with 1{’equations can be viewed as
¢ n different functions, or
« A single parametric curve through R”

* |t is useful to draw direction fields on the phase portraits for a system of DEs.

« |f there are n unknown functions, then the phase space is R”
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Example (logistic equation, n = 1): - = P(100 — P)

Example (predator-prey):
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FIGURE 4.1.6. Direction field and
solution curves for the system

x' =-2y,y = %x of Example 6.



