MAT303: Calc IV with applications

Lecture 17 - April 52021

So far this class:

- Looking at single differential equations

Rest of the class:

- Systems of differential equations (analogous to systems of algebraic equations)

Individual algebraic equation

$$
\begin{aligned}
& 3 x=1 \\
\Rightarrow & x=\frac{1}{3}
\end{aligned}
$$

Systems of algebraic equations

$$
\begin{aligned}
& \left\{\begin{array}{l}
3 x+2 y=5 \\
2 x+y=3
\end{array}\right. \\
& \Rightarrow(x, y)=(1,1)
\end{aligned}
$$

Individual differential equation

$$
\begin{aligned}
x^{\prime}(t) & =x(t) \\
\Rightarrow \quad x(t) & =e^{t}
\end{aligned}
$$

Systems of differential equations

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{\prime}(t)=-2 y(t) \\
y^{\prime}(t)=\frac{1}{2} x(t)
\end{array}\right. \\
& \Rightarrow(x(t), y(t))=\left(\cos t, \frac{1}{2} \sin t\right)
\end{aligned}
$$

check:

$$
\begin{aligned}
& x^{\prime}(t)=-\sin t=-2 y(t) \\
& y^{\prime}(t)=\frac{1}{2} \cos t=\frac{1}{2} x(t) .
\end{aligned}
$$

Spring-mass problems

FIGURE 4.1.1. The mass-and-spring system of Example 1.

FIGURE 4.1.2. The "free body diagrams" for the system of Example 1.

Mixing problems

FIGURE 4.1.3. The two brine tanks of Example 2.

$$
\begin{aligned}
& x^{\prime}(t)=\text { salt in - salt out } \quad(\text { tank } 3) \\
&=(\text { conc. in }) \times(\text { water in })-(\text { conc. out }) \times(\text { water } \\
&\text { out }) \\
&=\frac{y(t)}{200+30 t-10 t-20 t} 10-\frac{x(t)}{100-30 t+10 t+20 t}=30 \\
&=\frac{y(t)}{20}-\frac{3 x(t)}{10} \\
& y^{\prime}(t)=\frac{3 x(t)}{10}-\frac{3}{20} y(t)
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=\text { salt } i n \text { tank } 1 \\
& y(t)=\text { salt } i n \text { tank } 2 .
\end{aligned}
$$

Aside from the previous applications, systems of differential equations naturally arise when we consider higher order DEs.

Example: The 3rd order equation
$x^{(3)}$ ($3 x^{\prime \prime}-2 x^{\prime}-5 x=\sin 2 t \lessdot$
is equivalent to the system of 3 equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=x_{3} \\
& x_{3}^{\prime}=5 x_{1}-2 x_{2}-3 x_{3}+\sin 2 t
\end{aligned}
$$

How?
Introduce new variables. Let

$$
\left\{\begin{array}{l}
x_{1}=x \\
x_{2}=x^{\prime} \\
x_{3}=x^{\prime \prime} .
\end{array}\right.
$$

Then

$$
x^{(3)}+3 x^{\prime \prime}+2 x^{\prime}-5 x=\sin 2 x
$$

becomes

$$
x_{2}=x^{\prime}
$$

In general: Any higher order differential equation
can be transformed into a system of first order equations, by introducing new variables.

Example: The system of and order BEs

$$
\begin{aligned}
2 x^{\prime \prime} & =-6 x+2 y \\
y^{\prime \prime} & =2 x-2 y+40 \sin 3 t
\end{aligned}
$$

is equivalent to the system of 4 first order equations:

$$
\begin{aligned}
& x_{1}=x \\
& \text { both sides; } \\
& x_{1}{ }^{\top}=x^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
2 x_{2}^{\prime} & =-6 x_{1}+2 y_{1} \\
y_{1}^{\prime} & =y_{2} \\
y_{2}^{\prime} & =2 x_{1}-2 y_{1}+40 \sin 3 t
\end{aligned}
$$

Let

$$
\begin{aligned}
& x_{1}=x \\
& x_{2}=x^{1}
\end{aligned}
$$

Then

We've now seen how systems of first order equations naturally arise:

- Directly from applications
- From (systems of) higher order equations

In the rest of this semester we will look at various methods to solve them.

- Many methods will involve linear algebra/matrices.

Consider the system
(.) $\quad x^{\prime}(t)=-2 y(t)$
$y(t)=\frac{-1}{2} x^{\prime}(f)=\frac{1}{2} c \sin (t-\alpha)$
(2)

$$
\begin{aligned}
y^{\prime}(t)=\frac{1}{2} x(t)<y^{\prime}(f) & =\frac{1}{2} c \cos (t-\alpha) \\
& \Rightarrow y(t)=\frac{1}{2} c \sin (t-\alpha)
\end{aligned}
$$

We will solve this without any linear algebra. It relies on what we already know for second order DEs.

Analogously to algebraic systems, we can try eliminating one of the variables:

$$
x^{\prime}=-2 y \text {. sub in (2) }
$$

diff. both sides

$$
\Rightarrow x^{\prime \prime}=-2 y^{\prime} \stackrel{\swarrow}{=}-2\left(\frac{1}{2} x\right)
$$

We've eliminated y.

$$
\begin{aligned}
& \text { So } x^{\prime \prime}=-x \text {. We've eliminated } y \text {. } \\
& \text { Sola is } x(t)=A \cos (+B \sin t \\
&
\end{aligned} \quad\left(\begin{array}{c}
\cos (t-\alpha) .
\end{array}\right.
$$

Solviion: $\left(x(t)=C \cos (t-\alpha), \quad y(t)=\frac{1}{2} C \sin (t-\alpha)\right)$ Solutions

Method 1: Turning a system into a higher order equation

Consider the system

$$
\begin{aligned}
x^{\prime}(t) & =-2 y(t) \\
y^{\prime}(t) & =\frac{1}{2} x(t)
\end{aligned}
$$

$$
x(0)=3 \cos \left(-\frac{\pi}{2}\right)=
$$

Solution: $x(t)=\dot{C} \cos (t-\alpha), \quad y(t)=\frac{1}{2} C \sin (t-\alpha)$

$$
\begin{gathered}
x(0)=5 \cos (2)=-3 / 2 \\
\left.y(t)=\frac{1}{2} C \sin (t-\alpha)=\frac{1}{2} 3 \sin \left(-\frac{\pi}{2}\right)=-2\right)
\end{gathered}
$$

There is another way to think about the solution.
The state of the system is described by a path $(x(t), y(t))$ through the plane \mathbb{R}^{2}.
For this DE, the solution curves trace out ellipses in the state space.

FIGURE 4.1.6. Direction field and solution curves for the system $x^{\prime}=-2 y, y^{\prime}=\frac{1}{2} x$ of Example 6.

Make sure you understand how this different the direction fields we considered in Ch1. There is no time axis.

Test your understanding:

- Which curve corresponds to the solution on the left? b)
- What is the effect does changing C have?
- What is the effect does changing α have?

- How did we draw the direction field?
- How can we determine that the trajectories are actually ellipses?

Analogously to algebraic systems, we can try eliminating one of the variables:

$$
\begin{aligned}
& x^{\prime}=4 \\
& \Rightarrow x^{\prime \prime}=y^{\prime}=2 x+y=2 x+x^{\prime} \\
& \Rightarrow \quad x^{\prime \prime}=2 x+x^{\prime} \\
& \Rightarrow x^{11}-x^{\prime}-2 x=0 \\
& \Rightarrow r^{2}-r-2=0 \\
& \rightarrow r=-1, r=2 \text {. } \\
& \Rightarrow x(f)=A e^{-t}+B e^{2 t} \\
& \Rightarrow y(t)=x^{\prime}(t)=-A e^{-t}+2 B e^{2 t} \text {. }
\end{aligned}
$$

Solution: $\underset{\longrightarrow}{x(t)}=A e^{-t}+B e^{2 t}, \quad y(t)=-A e^{-t}+2 B e^{2 t}$

$$
x(t)=e^{2 t}, y(t)=2 e^{2 t}
$$

Quiz: at $(x, y)=\dot{(0,2)}$ what is the slope of the direction field?
at 10,22

c) 3
d) Don't know
direction is $(2,2)$.
length also matters.
Phase portrait:

FIGURE 4.1.8. Direction field and solution curves for the system $x^{\prime}=y$, $y^{\prime}=2 x+y$ of Example 7.

Quiz: which curve corresponds to $A=0, B=1$? Coureft to $y=2 x$.
Quiz: what direction is the trajectory taking?
Ansurer is a).
Or plug g in

$$
t=0, t=1, t=2
$$

Consider the system

$$
\begin{aligned}
& x^{\prime}=-5 \\
& y^{\prime}=1.01 x-0.2 y
\end{aligned}
$$

Analogously to algebraic systems, we can try eliminating one of the variables:

$$
\begin{aligned}
& x^{\prime}=-4 \\
\Rightarrow & x^{\prime \prime}=-y^{\prime}=-1.01 x+0.2 y=-1.01 x-0.2 x^{\prime} \\
\Rightarrow & x^{\prime \prime}+0.2 x^{\prime}+1.01 \not x
\end{aligned}
$$

$$
\Rightarrow r^{2}+0.2 r+1.01
$$

$$
\Rightarrow r=-0.1 \pm \sqrt{0.01-1.01}
$$

$$
=-0.1 \pm i
$$

$$
\Rightarrow \quad x(f)=A e^{-t / 10} \sin t+B e^{-t / 10} \cos t
$$

$$
\Rightarrow y(f)=\frac{1}{10} A e^{-t / 10} \operatorname{cost}-\frac{1}{10} B e^{-t \lambda_{10}} \sin t
$$

$$
\text { Solution: } x(t)=e^{-t / 10} \sin t, y(t)=\frac{1}{10} e^{-t / 10}(\sin t+10 \cos t)
$$

Individual solutions:

<- Only shows one solution

FIGURE 4.1.10. x - and y-solution curves for the initial value problem of Example 8.

Phase portrait:

FIGURE 4.1.9. Direction field and solution curve for the system $x^{\prime}=-y$, solution curve for the system $x^{\prime}=-y$,
$y^{\prime}=(1.01) x-(0.2) y$ of Example 8.
<- Shows all solutions, But doesn't contain information about the time parametrization

- Systems of first order equations are important because
- They arise naturally in applications
- Any higher order equation can be transformed to such a system
- The solution to a system with n equations can be viewed
- n different functions, or
- A single parametric curve through \mathbb{R}^{n}
- It is useful to draw direction fields on the phase portraits for a system of DEs.
- If there are n unknown functions, then the phase space is \mathbb{R}^{n}

Example (logistic equation, $n=1$): $\frac{d P}{d t}=P(100-P)$

$$
x^{\prime}(t)=-2 y(t)
$$

Example (predator-prey): $\quad y^{\prime}(t)=\frac{1}{2} x(t)$.
$n=2$.

FIGURE 4.1.6. Direction field and solution curves for the system $x^{\prime}=-2 y, y^{\prime}=\frac{1}{2} x$ of Example 6.

