MAT303: Calc IV with applications

Lecture 16 - March 312021

Recently: Initial Value Problems

- Looking at $m y^{\prime \prime}+c y^{\prime}+k y=f(t)$
where we are solving for $y(t), y(0)=a, y^{\prime}(0)=b$

Today: Endpoint problems (Ch 3.8)

- $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, where we are solving for $y(x), y(0)=a, y(1)=b$
- Key difference: boundaries conditions of the form

$$
\begin{gathered}
y(c)=\ldots, y(d)=\ldots \\
c \neq d
\end{gathered}
$$

The shape of a jump rope being twirled satisfies the following equation:

$$
\left.\begin{array}{rl}
T y^{\prime \prime}+\rho \omega^{2} y & =0 \\
y(0) & =0 \\
y(L) & =0
\end{array}\right\} \text { eudpesits fired. }
$$

Where

- ω is angular frequency (constant)
- ρ is density fo the string (mass per unit length, constant)
- L is the length of the string (constant)
- y is the radial deviation from the center
- $0 \leq x \leq L$ is the location along the string we are measuring the deviation
- T is the tension force due to spring (constant) tangential to string. (b)

Explanation of the equation (not a full derivation): ${ }^{\text {Slope. }}$

- Net y component of tension force is $T y^{\prime \prime}$
- y component of force is proportional to y^{\prime}
. So net y component of force is prop. to $y^{\prime \prime}$

angular frequency. segment of the whirling string.
- Centripetal force is $-\rho \omega^{2} y^{d}$
dist to center
- Further away from center -> bigger circle -> greater force
- Faster spin \rightarrow greater fore.

When stable, forces should
balanced, Ty"

We see that it is natural to have boundary conditions at different points 0 and L , instead of at the same point.

Instead of

$$
\begin{array}{r}
T y^{\prime \prime}+\rho \omega^{2} y=0 \\
y(0)=0 \\
y(L)=0
\end{array}
$$

Look at $\quad y^{\prime \prime}+3 y=0 ; \quad y(0)=0, \quad y(\pi)=0 \quad$ (For simplicity)

Solution:
Characteristic equ is $r^{2}+3=0$

$$
\Rightarrow r= \pm \sqrt{3} i
$$

So general sold is

$$
\begin{aligned}
& y=A \cos (\sqrt{3} x)+B \sin (\sqrt{3} x) \\
& y(0)=0 \Rightarrow A \cdot 1+B \cdot 0 \Rightarrow A \Rightarrow A=0 \\
& \Rightarrow y(x)=B \sin (\sqrt{3} x) . \\
& y(\pi)=0 \Rightarrow B \sin (\sqrt{3} \pi)=0 \Rightarrow B=0 .
\end{aligned}
$$

Sola is $y=0$. Only trivial solus.
Look at $\quad y^{\prime \prime}+\begin{gathered}+4 y=0 ; \quad y(0)=0, \quad y(\pi)=0 \\ \text { characteristic }\end{gathered}$ equ is \quad (For simplicity)

$$
\Rightarrow r= \pm 2 i
$$

Solution: So general sold is

$$
\begin{aligned}
& y=A \cos (2 x)+B \sin (2 x) \\
& y(0)=0 \Rightarrow A \cdot I+B \cdot 0=A \Rightarrow A=0 \\
& \Rightarrow y(x)=B \sin (2 x) .
\end{aligned}
$$

$y(\pi)=0 \Rightarrow \frac{B \sin (2 \pi)}{0}=0 \Rightarrow B$ can be anything.
So solutions are $y=B \sin (2 x)$, amy $B \in \mathbb{R}$.

We see that $\quad y^{\prime \prime}+\lambda y=0 ; \quad y(0)=0, \quad y(\pi)=0$
nonzero
only has solutions for certain λ.
Let's find out when there are solutions (ie. let's solve the "eigenvalue problem"):
Leave λ as a variable:
characteristic equ is $r^{2}+\lambda=0$

$$
\Rightarrow r= \pm \sqrt{\lambda} i
$$

general sol is

$$
\begin{aligned}
& y=A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x) \\
& \Rightarrow=0 \Rightarrow A \cdot 1+B \cdot 0=A \Rightarrow A=0 \\
& \Rightarrow y(x)=B \sin (\sqrt{\lambda} x) .
\end{aligned}
$$

$$
y(\pi)=0 \Rightarrow B \sin (\sqrt{\lambda \pi})=0
$$

x if $\sin (\sqrt{\lambda} \pi) \neq 0, B=0$
x if $\sin (\sqrt{\lambda} x)=0, B$ can be anything.

$$
\text { ie. } \sqrt{\lambda}=n \text { integer, ie. } \lambda=n^{2} \text {. }
$$

Infinitely wang solutions $y=B \sin (\sqrt{\lambda} \pi)$
Contrast to initial value problem, where every choice of λ has a solution:

$$
y^{\prime \prime}+\lambda y=0 ; \quad y(0)=0, \quad y^{\prime}(0)=0 \quad \text { unique. }
$$

Recall from linear algebra:

Let A be a matrix (linear operator)

If we wish to find vectors v and numbers λ such that

$$
A v=\lambda v
$$

This is called an eigenvalue problem.
Solutions might only exists for certain λ and certain v.
Alternatively, youire solving for both λ and v If (λ, v) is a solution, λ is called an eigenvalue and v is called an eigenvector.

$$
\begin{aligned}
& \therefore . y^{\prime \prime}=-\lambda y=0,(0)=0,(x)=0 \\
& \therefore=. h_{y}=-\lambda y .
\end{aligned}
$$

Eigenvalues: $\lambda_{n}=a^{2}$

$$
\lambda_{1}=1, \lambda_{2}=4, \lambda_{3}=9 \ldots
$$

Note: if v is an eigenvector, so is any constant multiple of v.
if $k v=\lambda v$, let $\omega=k v$,

$$
A \omega=A k v=k A v=k \lambda_{v}=\lambda k v=\lambda \omega .
$$

$$
\lambda=\left(\frac{1}{2}+n\right)^{2}
$$

Another eigenvalue problem

Solve the eigenvalue problem

$$
y^{\prime \prime}+\lambda y=0 ; \quad y(0)=0, \quad y^{\prime}(\pi)=0
$$

Solution:
Find eigenvalues λ and eigenfunctions y.

Leave λ as a variable:

$$
\text { characteristic eq" is } r^{2}+\lambda=0
$$

$$
\Rightarrow r= \pm \sqrt{\lambda} i
$$

general solus is

$$
\begin{aligned}
& \quad y=A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x) \\
& y(\cdot)=0 \Rightarrow A \cdot I+B \cdot 0=A \Rightarrow A=0 \\
& \Rightarrow y(x)=B \sin (\sqrt{\lambda} x) .
\end{aligned}
$$

Now $y^{\prime}(x)=\sqrt{\lambda} B \cos (\sqrt{\lambda} x)$
So

$$
y^{\prime}(\pi)=\sqrt{\pi} B \cos (\sqrt{\lambda} \pi)=0
$$

if $\cos (\sqrt{\lambda} \pi)=0, B$ con be anything.

$$
\begin{aligned}
& \Rightarrow \sqrt{\lambda} \pi=\frac{\pi}{2}+n \pi, n \in \mathbb{Z} \\
& \Rightarrow \sqrt{\lambda}=\frac{1}{2}+n, n \in \mathbb{Z} \\
& \Rightarrow \lambda_{n}=\left(\frac{1}{2}+n\right)^{2}, n \in \mathbb{F}
\end{aligned}
$$

if $\lambda \neq\left(\frac{1}{2}+n\right)^{2}$, thea $B=0$,
so $y=0$.
Eigenvalues are: $\lambda_{n}=\left(\frac{1}{2}+n\right)^{2}$

$$
\begin{aligned}
& \left(\frac{1}{2}\right)^{2},\left(\frac{3}{2}\right)^{2},\left(\frac{5}{2}\right)^{2} \ldots . \\
& \hat{x}_{-1} \hat{\lambda}_{1}{\underset{x}{2}}^{2}
\end{aligned}
$$

Eigenfunctions:

$$
y_{n}=B \sin \left(\sqrt{\lambda_{n}} \pi\right)
$$

The shape of a jump rope being twirled satisfies the following equation:

$$
\begin{aligned}
T y^{\prime \prime}+\rho \omega^{2} y & =0 \\
y(0) & =0 \\
y(L) & =0
\end{aligned}
$$

ρ, T, L are constants.
Rearrange:

$$
\begin{aligned}
& y^{\prime \prime}+\left(\frac{e}{T} \omega^{2}\right) y=0, g(0)=0, y(2)=0 \\
& y(x)=B \sin \left(\sqrt{\frac{e}{T}} \omega x\right)
\end{aligned}
$$

Now $\quad y(L)=B \sin \left(\sqrt{\frac{\rho}{T}} \omega L\right)=0$
if $\sqrt{\text { 弚 }} \mu L=n \pi, \quad B$ can be anything.
$\underset{\text { angald }}{\text { frequency. }} \quad y=B \sin \left(\sqrt{\frac{e}{c}} \omega L x\right)$
otherwise: $\quad B=0, \quad y=0$

Conclusion: You can only rotate a jump rope at a certain angular frequencies:

Even though the equations
$y^{\prime \prime}+p(x) y^{\prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(0)=0 \quad$ (1)
and
$y^{\prime \prime}+p(x) y^{\prime}+\lambda y=0, \quad y(0)=0, \quad y(L)=0$
look superficially similar, the solutions have very different properties.

- For (1), existence and uniqueness of IVPs usually applies, no matter what λ

clependin
- Alternatively, we may think of (2) as a joint equation for λ, y.

To solve (2), we have to solve for both λ and y.

