MAT303: Calc IV with applications

Lecture 15 - March 28 2021
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* We are interpreting my” + cy’ + ky = f(¥)
as a mass-spring system.

« When f(t) = 0, saw that there are 3 regimes, depending on whether ¢ < 4km.

« Last time, we saw how to solve the equation when f(#) isnonzero.

Today:

 Physical interpretation of my” + ¢y’ + ky = f(t) when f(¢) is nonzero (Ch 3.6)
* Resonance for damped and undamped forced oscillations
» Transient and steady periodic solutions



Recall: (Lecture 13)

* m: mass
* k: The constant such that
Force = k - displacement

mx"+kx =0

describes unforced, undamped oscillations.
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Solution is: x = Ccos(wyt — @), where
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+ C and a depend on initial conditions cond:troy .

Examples:

+ Mass on spring

s

* Guitar/piano string
* Bridge swinging side to side/up down
 Child on swing (pendulum)

* Wine glass

Now assume we put in an external force of F:

mx" +kx = F,

Particular Solution:
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« Trial solution x(7) = A

« Solution is x(f) = Fy/k
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Forced undamped oscillations
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Recall: (Lecture 13)

* m: mass
* k: The constant such that
Force = k - displacement

mx"+kx =0

describes unforced, undamped oscillations.

Solution is: x = Ccos(wyt — @), where

k
* Wy = "

+ C and a depend on initial conditions
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+ Mass on spring
* Guitar/piano string
* Bridge swinging side to side/up down
 Child on swing (pendulum)

* Wine glass

Forced undamped oscillations

Now assume external force is periodic:

'; mx" + kx = Fcos(wt)
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Examples:

+ Mass on spring .
 Guitar/piano string .
» Bridge swinging side to side/up down .
* Child on swing (pendulum) .
* Wine glass .
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Particular Solution: conlwkh
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https://www.desmos.com/calculator/tpirvpcwbe
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« I} : external force amplitude
* m : (angular) frequency of ext. force

External force:

Motor?

Vibrations caused by other sounds
Soldiers marching, wind blowing
Adult pushing the swing

Vibration caused by someone singing
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Forced undamped oscillations

Now assume external force is periodic:

mx" +kx = I;cos(wt)

Examples:

* Mass on spring

e Guitar/piano string

* Bridge swinging side to side/up down
 Child on swing (pendulum)

* Wine glass
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Solution: =
Ifw # w, : x(t) = Ccos (wot — a) +
Ifw=aw, : x(t) = Ccos (a)ot—a) +
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* m: mass
+ k: The constant such that
Force = k - displacement

e F : external force amplitude

* w : (angular) frequency of ext. force

External force:

* Motor?

 Vibrations caused by other sounds

* Soldiers marching, wind blowing

e Adult pushing the swing

 Vibration caused by someone singing
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FIGURE 3.64. The phenomenon of
resonance.

Observations

« New amplitude of x, is much bigger than what if we just use f(7) = F|,
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. Call p = ————— the amplification factor.
P = @lwo?]

* As w — w,, this amplification goes to oo .

This is the phenomenon of resonance.

Roughly speaking: when external force is synchronized

with natural frequency, amplitude gets very large.

Causes bridge collapse, sympathetic resonance (music),
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wine glass shattering
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Solution:
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mx" + X+ kx=0
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FIGURE 347. Over m.\mpm

X0 and different initial velocities.
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FIGURE 3.49. Underdamped
oscillations:
x(t) = Ce™P" cos(w1 — a).

¢ ¢ : damping coefficient

[UE]

'

FIGURE 3438. Critically damped
motion: x(1) = (e1 + caf)e™ P with
p > 0. Solution curves are graphed
with the same initial position xo and
different initial velocitics.

As long as there is damping, ¢ > 0, the solutions go to 0.

The solutions are called transient.

Damped forced oscillations

« I} : external force amplitude

mx" + cy + kx = Fcos(wt)
e @ : (angular) frequency of ext. force

Trial solution: x(1) = A cos(wt) + B sin(wt) or x(t) = C cos(wt — a)
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Solution: x,,(7) = Ccos(wl —a)

Where:

C=
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Observations:

* Amplitude is always finite, unlike undamped case ’\:O
 Amplitude close to Fy/k if w is very small © =& = C= =

* Amplitude small if @ is very large v - @0 ) C—= O
* Amplitude attains a maximum for some @ (minimize the denominator)
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Consider

mx" + cy + kx = f(1) % cos CEJ(/

em=1,c=2k=26
« External force f(f) = 82 cos(4t)
« x(0)=6, x(0)=0

Questions:

¢ Transient motion?

» Steady periodic oscillations?
* Practical resonance?

Homogeneous solution:
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Concrete example

Particular solution: C_ M‘( 'f)e,f\sc,o\ T< 56(”\3 4
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Next time
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Today: ?
« Physical interpretation of my” + ¢y’ + ky = f(t) when f(¢) is nonzero (Ch 3.6)
* Resonance for damped and undamped forced oscillations C(A 2-%-

* Transient and steady periodic solutions

Next time:
* Ch 3.8 Endpoint problems

V' +p()y +q(x)y =0, y@=0, y@b)=0.
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