MAT303: Calc IV with applications

Lecture 14 - March 24 2021

Today

- When f(t) = 0, saw that there are 3 regimes, depending on whether c < 4km:
 - Underdamped
 - · Critically damped
 - Overdamped

Today:

Solving nonhomogeneous linear DEs

Recall: Superposition principle and linear differential operators

Principle of superposition for homogeneous linear equations:

If y_1 and y_2 are solutions to

ay'' + by' + cy = 0

Then $Ay_1 + By_2$ is also a solution.

Using operator notation:
Let
$$L y = ay'' + by' + cy$$

if $Ly_1 = 0$ and $Ly_2 = 07$
Heren
 $L(Ay_1 + By_2) = L(by_1) + L(By_2) = ALy_1 + BLy_2$
 $= A \cdot 0 + B \cdot 0$
 $= 0.$

Principle of superposition for non-homogeneous linear equations: If y_1 is a solution to $ay'' + by' + cy = f_1(x)$ and y_2 is a solution to $ay'' + by' + cy = f_2(x)$ Then $Ay_1 + By_2$ is a solution to $ay'' + by' + cy = Af_1(x) + Bf_2(x)$ Ly,= f, , Ly2=fz Proof: $L(Ay, + By_2) = L(Ay) + L(By_2) = ALy_1 + BLy_2$ $= Af_1 + Bf_2.$ 50

3

How do we deal with external force, e.g.

$$y'' - 4y = 2e^{3x} ?$$

Recall (lecture 11)

THEOREM 5 Solutions of Nonhomogeneous Equations

Let y_p be a particular solution of the nonhomogeneous equation in (2) on an open interval *I* where the functions p_i and *f* are continuous. Let y_1, y_2, \ldots, y_n be linearly independent solutions of the associated homogeneous equation in (3). If *Y* is any solution whatsoever of Eq. (2) on *I*, then there exist numbers c_1, c_2, \ldots, c_n such that

$$Y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x)$$
(16)

for all x in I.

Roughly speaking:

• All solutions are of the form $Y(x) = y_{\mathbf{x}} + y_p$

where $\boldsymbol{y}_{\boldsymbol{b}}$ is a solution to the homogeneous version of the equation.

Solution:

Osclution to homogeneous version:

$$y^{*-4y=0}$$

 \Rightarrow charachemistic eqn is $r^{2}-4=0$
 $r=\pm 2$
 $y = C_{1}e^{2x} + C_{2}e^{-2x}$
 $r=\pm 2$
 $y = C_{1}e^{2x} + C_{2}e^{-2x}$
 $r=\pm 2$
 $y = C_{1}e^{2x} + C_{2}e^{-2x}$
 $y = C_{1}e^{2x} + C_{2}e^{-2x} + \frac{2}{5}e^{3x}$.
 $y = C_{1}e^{2x} + C_{2}e^{-2x} + \frac{2}{5}e^{3x}$.

How do we deal with external force, e.g.

$$y'' + 3y' + 4y = 3x + 2?$$

Recall (lecture 11)

THEOREM 5 Solutions of Nonhomogeneous Equations

Let y_p be a particular solution of the nonhomogeneous equation in (2) on an open interval *I* where the functions p_i and *f* are continuous. Let y_1, y_2, \ldots, y_n be linearly independent solutions of the associated homogeneous equation in (3). If *Y* is any solution whatsoever of Eq. (2) on *I*, then there exist numbers c_1, c_2, \ldots, c_n such that

$$Y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x)$$
(16)

for all x in I.

Roughly speaking:

• All solutions are of the form $Y(x) = y_c + y_p$

where y_c is a solution to the homogeneous version of the equation.

Solution:

Oblition to homogeneous version:

$$r^{2}+3r+t=0 \implies r=-\frac{3\pm\sqrt{3}-16}{2}$$

$$r=-\frac{3\pm\sqrt{7}+1}{2}$$

$$y=e^{-\frac{3}{2}K}\left(C_{1}\cos\frac{5\pi}{2}x+C_{2}\sin\frac{5\pi}{2}x\right)$$

$$(2) \text{ Find a particular solution:}$$

$$Guess y=Ax+B, plug in, solve:$$

$$0+3A+4Ax+B=-3x+2$$

$$\Rightarrow 4A=3 \implies A=-\frac{3}{4} \implies \frac{9}{4}+B=2 \implies B=-\frac{1}{4}$$

$$(3) General solution yc+yp;$$

$$Y=e^{-\frac{3}{2}t}\left(C_{1}\cos\frac{5\pi}{2}+C_{2}\sin\frac{5\pi}{2}+1\right)$$

$$+\frac{4}{3}x-\frac{1}{4}$$

Ch 3.5: Nonhomogeneous equations

THEOREM 5 Solutions of Nonhomogeneous Equations

Let y_p be a particular solution of the nonhomogeneous equation in (2) on an open interval *I* where the functions p_i and *f* are continuous. Let y_1, y_2, \ldots, y_n be linearly independent solutions of the associated homogeneous equation in (3). If *Y* is any solution whatsoever of Eq. (2) on *I*, then there exist numbers c_1, c_2, \ldots, c_n such that

$$Y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x)$$
(16)

for all x in I.

Roughly speaking:

• All solutions are of the form $Y(x) = y_h + y_p$

where y_h is a solution to the homogeneous version of the equation.

How do we deal with external force, e.g.

$$y'' - 4y = 2e^{2x}?$$

Recall (lecture 11)

THEOREM 5 Solutions of Nonhomogeneous Equations

Let y_p be a particular solution of the nonhomogeneous equation in (2) on an open interval *I* where the functions p_i and *f* are continuous. Let y_1, y_2, \ldots, y_n be linearly independent solutions of the associated homogeneous equation in (3). If *Y* is any solution whatsoever of Eq. (2) on *I*, then there exist numbers c_1, c_2, \ldots, c_n such that

$$Y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x)$$
(16)

for all x in I.

Roughly speaking:

• All solutions are of the form $Y(x) = y_h + y_p$

where y_h is a solution to the homogeneous version of the equation.

Solution:

Osolution to homogeneous version:

$$y^{*-}(y=0)$$

 \Rightarrow charachemistic eqn is $r^{2}-q=0$
 $r=\pm 2$
 $y=C_{1}e^{2x}+C_{2}e^{-2x}$
 $r=\pm 2$
 $y=C_{1}e^{2x}+C_{2}e^{-2x}$
 $r=\pm 2$
 $y=C_{1}e^{2x}+C_{2}e^{-2x}$
 $r=\pm 2$
 $r=\pm 2e^{2x}$
 $r=\pm 2e^{2x}$
 $r=\pm 2e^{2x}$
 $r=\pm 2e^{2x}$
 $r=\pm 24e^{2x}$
 $r=\pm 2e^{2x}$
 $r=\pm$

ay"+by'+ cy = f

6.3

Assume that only finitely many linearly independent functions appears in the sequence f,f',f'',f''',\ldots

RULE 1 Method of Undetermined Coefficients

Suppose that no term appearing either in f(x) or in any of its derivatives satisfies the associated homogeneous equation Ly = 0. Then take as a trial solution for y_p a linear combination of all linearly independent such terms and their derivatives. Then determine the coefficients by substitution of this trial solution into the nonhomogeneous equation Ly = f(x).

To solve constant coefficient linear differential equation ay'' + by' + cy = f(x),

- 1. Find the homogeneous (i.e. complementary) solutions y_c
- 2. Check that f and its derivatives don't satisfy the homogeneous equation
- 3. Determine y_p by guessing y_p = linear combination of f and its derivatives, and solve for coefficients
- 4. General solution is $y_c + y_p$

$$\begin{array}{l} \begin{array}{l} F = e^{kx} \\ F = e^$$

How to deal with this situation?

$$y'' - 4y = 2e^{2x}.$$

Want to take $y_p = Ae^{2x}$ as trial solution, but it's a solution to the homogeneous equation.

Solution: Multiply trial solution by *x*.

yc = A e2x + Be-2≠

The case when f is a solution to the homogeneous equation

In general:

Assume that only finitely many linearly independent functions appears in the sequence f,f',f'',\ldots

RULE 2 Method of Undetermined Coefficients

If the function f(x) is of either form in (14), take as the trial solution

$$y_p(x) = x^s [(A_0 + A_1 x + A_2 x^2 + \dots + A_m x^m) e^{rx} \cos kx + (B_0 + B_1 x + B_2 x^2 + \dots + B_m x^m) e^{rx} \sin kx],$$
(15)

where s is the smallest nonnegative integer such that no term in y_p duplicates a term in the complementary function y_c . Then determine the coefficients in Eq. (15) by substituting y_p into the nonhomogeneous equation.

Translation: keep multiplying trial solution by x until it's no longer a solution to the homogeneous equation.

Consider the equation

 $y'' + y = \tan(x).$

Homogeneous solutions:

 $y = A\cos(x) + B\sin(x)$

Unfortunately, the sequence f,f',f'',\ldots has infinitely many linearly independent terms.

$$\sec^2 x$$
, $2 \sec^2 x \tan x$, $4 \sec^2 x \tan^2 x + 2 \sec^4 x$, .

I.e. The vector space spanned by f and its derivatives is infinite dimensional.

We can't use method of undetermined coefficients.

Variation of parameters

Want to solve
$$y'' + Py' + Qy = f(x)$$
 Would be the function of the function o

Key ideas:

• Guess $y_p = u_1y_1 + u_2y_2$ where y_1, y_2 are the homogeneous solutions.

Plug this into $L[y_p] = 0$ and see what this tells us about u_1, u_2 .

• We are free to make one more additional constraint to make our computation easier

$$y_{1} = u_{1}y_{1} + u_{2}y_{1}$$

$$y_{1}^{2} = (u_{1}y_{1}^{2} + u_{2}y_{2}^{2}) + (u_{1}^{2}y_{1} + u_{2}^{2}y_{2}) = 0.$$

$$y_{1}^{2} = (u_{1}y_{1}^{2} + u_{2}y_{2}^{2}) + u_{1}^{2}y_{1}^{2} + u_{2}^{2}y_{2}^{2}$$

$$y_{1}^{2} = u_{1}y_{1}^{2} + u_{2}y_{2}^{2} + u_{1}^{2}y_{1}^{2} + u_{2}^{2}y_{2}^{2}$$

$$(4) \quad \text{Since} \quad y_{1}^{2} + P_{1}z_{1}^{2} + Q_{1}z_{1} = 0$$

$$\text{So} \quad y_{1}^{2} = -P_{1}z_{1}^{2} - Q_{1}z_{1}$$

$$\text{Therefore.} \quad y_{1}^{2} = -P_{1}z_{1}^{2} - Q_{1}z_{1}$$

$$\text{Therefore.} \quad u_{1}y_{1} + u_{2}^{2}y_{2}^{2}$$

$$(u_{1}y_{1} + u_{2}^{2}y_{2}) = 0.$$

$$\Rightarrow \quad (u_{1}y_{1} + u_{2}^{2}y_{2}) = 0.$$

$$\Rightarrow \quad (u_{1}y_{1} + u_{2}^{2}y_{2}) = 0.$$

$$\Rightarrow \quad (u_{1}y_{1} + u_{2}^{2}y_{2}) = 0.$$

Variation of parameters

THEOREM 1 Variation of Parameters

If the nonhomogeneous equation y'' + P(x)y' + Q(x)y = f(x) has complementary function $y_c(x) = c_1 y_1(x) + c_2 y_2(x)$, then a particular solution is given by

$$y_p(x) = -y_1(x) \int \frac{y_2(x)f(x)}{W(x)} dx + y_2(x) \int \frac{y_1(x)f(x)}{W(x)} dx, \qquad (33)$$

where $W = W(y_1, y_2)$ is the Wronskian of the two independent solutions y_1 and y_2 of the associated homogeneous equation.

Consider a system of two linear equations in two variables. $a_1x + b_1y = c_1$ $a_2x + b_2y = c_2$ The solution using Cramer's Rule is given as $a_2 c_2$, $D \neq 0$. c_2 D ≠ 0; y = ("" $\begin{pmatrix} q_{2}' \\ q_{2} \end{pmatrix} \begin{pmatrix} u_{1}' \\ q_{2}' \end{pmatrix} = \begin{pmatrix} p \\ 0 \end{pmatrix}$ Sola ìS u, 1'42-414 1 U t yr 542 dr Ц, 9 u242.

Variation of parameters

Back to our example:

 $y'' + y = \tan(x).$

Homogeneous solutions:

 $y_1 = \cos(x), y_2 = \sin(x)$

RULE 1 Method of Undetermined Coefficients

Suppose that no term appearing either in f(x) or in any of its derivatives satisfies the associated homogeneous equation Ly = 0. Then take as a trial solution for y_p a linear combination of all linearly independent such terms and their derivatives. Then determine the coefficients by substitution of this trial solution into the nonhomogeneous equation Ly = f(x).

Need to explain why
$$y_p = C_0 f + C_1 f' + C_2 f'' + \dots + C_n f^{(n)}$$

Proof sketch:

1. Let V be the vector space spanned by $f,f',f^{\prime\prime},f^{\prime\prime\prime},\ldots$

We are assuming that V is finite dimensional.

- 2. Then *L* is a linear operator $V \rightarrow V$.
- By the rank nullity theorem from linear algebra, one of the two possibilities always holds:

•
$$Lg = 0$$
 for some $g \in V$, i.e. dim(ker L) > 0.
• $Lg = K$ always bas a solution $g \in V$.

 Therefore, if we assume that the first doesn't hold, then the second must hold.

Why does method of undetermined coefficients work?

What about rule 2?

RULE 2 Method of Undetermined Coefficients

If the function f(x) is of either form in (14), take as the trial solution

$$y_p(x) = x^s [(A_0 + A_1 x + A_2 x^2 + \dots + A_m x^m)e^{rx} \cos kx + (B_0 + B_1 x + B_2 x^2 + \dots + B_m x^m)e^{rx} \sin kx],$$
(15)

where s is the smallest nonnegative integer such that no term in y_p duplicates a term in the complementary function y_c . Then determine the coefficients in Eq. (15) by substituting y_p into the nonhomogeneous equation.

Need to explain why $y_p = x^s (C_0 f + C_1 f' + C_2 f'' + \dots + C_n f^{(n)})$

Proof sketch:

1. Let V be the vector space spanned by $f,f',f^{\prime\prime},f^{\prime\prime\prime},\ldots$

We are assuming that V is finite dimensional.

- 2. Then *L* is a linear operator $V \rightarrow V$, and dim(ker*L*) > 0.
- 3. Consider the vector space $W = \{x^s g : g \in V\}$.
 - Check: If s is small enough, $L: W \to V$.
 - Check: As s increases, dim(ker L) decreases
- 4. Therefore, if *s* is just right, dim(ker *L*) = 0 and so Lg = h always a solution $g \in W$.