MAT303: Calc IV with applications

Lecture 14 - March 242021

- Physical interpretation of sporing courotant
in terms of mass-spring systems

- When $f(t)=0$, saw that there are 3 regimes, depending on whether $c<4 \mathrm{~km}$:
- Underdamped
- Critically damped
- Overdamped

Today:

- Solving nonhomogeneous linear DEs

Principle of superposition for homogeneous linear equations:
If y_{1} and y_{2} are solutions to

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Then $A y_{1}+B y_{2}$ is also a solution.

Using operator notation:
Let $L y=a y^{\prime \prime}+b y^{\prime}+c y$
if $L y_{1}=0$ and $L y_{2}=01$
Hen

$$
\begin{aligned}
& \text { Hen } \begin{aligned}
L\left(A y_{1}+B y_{2}\right)=L\left(A y_{1}\right)+L\left(B y_{2}\right) & =A L_{y_{1}}+B L_{y_{2}} \\
& =A \cdot O+B \cdot O \\
& =0
\end{aligned}
\end{aligned}
$$

Principle of superposition for non-homogeneous linear equations:
If y_{1} is a solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=f_{1}(x)
$$

and y_{2} is a solution to
$a y^{\prime \prime}+b y^{\prime}+c y=f_{2}(x)$
Then $A y_{1}+B y_{2}$ is a solution to
$a y^{\prime \prime}+b y^{\prime}+c y=A f_{1}(x)+B f_{2}(x)$
Proof: $L y_{1}=f_{1}, \quad L_{2}=f_{2}$

So

$$
\begin{aligned}
L\left(A y_{1}+B y_{2}\right) & =L\left(A_{y_{2}}+L\left(B_{y_{2}}\right)=A L_{y_{1}}+B L_{y_{2}}\right. \\
& =A f_{1}+B f_{2} .
\end{aligned}
$$

How do we deal with external force, e.g

$$
y^{\prime \prime}-4 y=2 e^{3 x} ?
$$

Recall (lecture 11)

THEOREM 5 Solutions of Nonhomogeneous Equations
Let y_{p} be a particular solution of the nonhomogeneous equation in (2) on an open interval I where the functions p_{i} and f are continuous. Let $y_{1}, y_{2}, \ldots, y_{n}$ be linearly independent solutions of the associated homogeneous equation in (3). If Y is any solution whatsoever of Eq. (2) on I, then there exist numbers c_{1}, c_{2}, \ldots, c_{n} such that

$$
\begin{equation*}
Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x) \tag{16}
\end{equation*}
$$

for all x in I.

Roughly speaking:

- All solutions are of the form $Y(x)=y_{c}+y_{p}$
where y_{c} is a solution to the homogeneous version of the equation.

Solution:

$$
\begin{aligned}
& \text { (1) Solution to homogeneous version: } \\
& \qquad y^{\prime \prime}-4 y=0 \\
& \Rightarrow \text { characteristic eqn is } r^{2}-4=0 \\
& \qquad y_{c}=c_{1} e^{2 x}+C_{2} e^{-2 x} \quad r= \pm 2 \\
& \text { (2) Find a particular solution: } \\
& \text { Guess } y=A e^{3 x}, \text { sub into eqn. } \\
& \text { solve for } A \\
& \text { qA } e^{3 x}-4 A e^{3 x}=2 e^{3 x} . \\
& \text { So } S A=2 . \\
& \text { So So } A=2 / 5 . \\
& y_{p}=\frac{2}{5} e^{3 x} .
\end{aligned}
$$

(3) General solution $y_{c}+y_{p}$:

$$
y=c_{1} e^{2 x}+c_{2} e^{-2 x}+\frac{2}{5} e^{3 x}
$$

How do we deal with external force, e.g.

$$
y^{\prime \prime}+3 y^{\prime}+4 y=3 x+2 ?
$$

Recall (lecture 11)

THEOREM 5 Solutions of Nonhomogeneous Equations

Let y_{p} be a particular solution of the nonhomogeneous equation in (2) on an open interval I where the functions p_{i} and f are continuous. Let $y_{1}, y_{2}, \ldots, y_{n}$ be linearly independent solutions of the associated homogeneous equation in (3). If Y is any solution whatsoever of Eq. (2) on I, then there exist numbers c_{1}, c_{2}, \ldots, c_{n} such that

$$
\begin{equation*}
Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x) \tag{16}
\end{equation*}
$$

for all x in I.

Roughly speaking:

- All solutions are of the form $Y(x)=y_{c}+y_{p}$
where y_{c} is a solution to the homogeneous version of the equation.

Solution:

$$
\begin{aligned}
& \text { (1) Solution to homogeneous version: } \\
& r^{2}+3 r+4=0 \Rightarrow r=\frac{-3 \pm \sqrt{9}-16}{2} \\
& r=\frac{-3 \pm}{2} \frac{\sqrt{7} i}{2} \\
& y=e^{-3 / 2 x}\left(C_{1} \cos \frac{\sqrt{7}}{2} x+C_{2} \sin \frac{\sqrt{7}}{2} x\right)- \\
& \text { (2) Find a particular solution:- } \\
& \text { Guess } y=A x+B \text {, plug in, solve: } \\
& 0+3 A+4 A x+B=3 x+2 \\
& \Rightarrow 4 A=3 \Rightarrow A=3 / 4 \Rightarrow \frac{a}{4}+B=2 \Rightarrow B=\frac{-1}{4} .
\end{aligned}
$$

(3) General solution $y_{c}+y_{p}$:

$$
\begin{array}{r}
y=e^{-3 / 2 t}\left(C_{1} \cos \frac{\sqrt{7}}{2} t+c_{2} \sin \frac{\sqrt{7}}{2} t\right) \\
+\frac{4}{3} x-\frac{1}{4}
\end{array}
$$

How do we deal with external force, e.g.

$$
3 y^{\prime \prime}+3 y^{\prime}-2 y=\stackrel{f}{2 \cos x ?}
$$

$$
4
$$

Tale guess linear coomb of

Recall (lecture 11)

$$
f \text { and all of its }
$$

THEOREM 5 Solutions of Nonhomogeneous Equations
Let y_{p} be a particular solution of the nonhomogeneous equation in (2) on an open interval I where the functions p_{i} and f are continuous. Let $y_{1}, y_{2}, \ldots, y_{n}$ be linearly independent solutions of the associated homogeneous equation in (3). If Y is any solution whatsoever of Eq. (2) on I, then there exist numbers c_{1}, c_{2}, \ldots, c_{n} such that

$$
\begin{equation*}
Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x) \tag{16}
\end{equation*}
$$

for all x in I.

Roughly speaking:

- All solutions are of the form $Y(x)=y_{h}+y_{p}$ where y_{h} is a solution to the homogeneous version of the equation.
(1)Solution to homogeneous version:
Solution:

$$
y_{c}=
$$

(2) Find a particular solution-

Guess $y=A \cos t$ plug in, solve:
$-3 A \cos x-3 A \sin x-2 A \cos x=2 \cos x$ Doeself work. No \sin on RHS. Cinstread guess $y=A \cos \pi+B \sin x$:

$$
\frac{-3 A \cos x}{-3 B \sin x+3 A \sin x-2 A \cos x}-\frac{-2 B \sin x}{-2 \cos x}
$$ ie.

$$
\begin{aligned}
& -3 A-2 A+3 B=2 \quad-5 A+3 B 2 \\
& \left.\begin{array}{rl}
-3 A-3 B-2 B=0 & \Rightarrow-3 A-5 B=0 \\
-3 & -5 \\
-3 & -5 \\
B
\end{array}\right)=\binom{2}{0} .
\end{aligned}
$$

(3) General solution $y_{c}+y_{p:}^{\text {a: }}$

$$
y=y_{c}+A \cos x+B \sin x
$$

How do we deal with external force, e.g.

$$
y^{\prime \prime}-4 y=2 e^{2 x} ?
$$

Recall (lecture 11)

THEOREM 5 Solutions of Nonhomogeneous Equations

Let y_{p} be a particular solution of the nonhomogeneous equation in (2) on an open interval I where the functions p_{i} and f are continuous. Let $y_{1}, y_{2}, \ldots, y_{n}$ be linearly independent solutions of the associated homogeneous equation in (3). If Y is any solution whatsoever of Eq. (2) on I, then there exist numbers c_{1}, c_{2}, \ldots, c_{n} such that

$$
\begin{equation*}
Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x) \tag{16}
\end{equation*}
$$

for all x in I.

Roughly speaking:

- All solutions are of the form $Y(x)=y_{h}+y_{p}$
where y_{h} is a solution to the homogeneous version of the equation.

Solution:

$$
\begin{aligned}
& \text { © Solution to homogeneous version: } \\
& y^{\prime \prime}-4 y=0 \\
& \Rightarrow \text { characteristic eu is } r^{2}-4=0 \\
& y=c_{1} e^{2 x}+c_{2} e^{-2 x} \\
& \text { (2) Find a particular solution: } \\
& \text { Guess } y=A e^{2 x} \text {, sub int eq. } \\
& \text { solve for } A \\
& \begin{array}{l}
y^{\prime \prime}-4 y=4 A e^{2 x}-4 A e^{2 x}=0 \text {. } 72 e^{2 x} \\
\text { when thess is a hoorogeneous sol. it's }
\end{array} \\
& \text { the wrong guess. } \\
& \text { instead, guess } y=A x e^{2 x}, y^{\prime}=A e^{2 x}+2 A e^{2 x} x \\
& \begin{aligned}
y^{2 x}-4 y & =2 A e^{2 x}+2 A e^{2 x}+4 A e^{2 x} \cdot x-4 A e^{2 x} \cdot x=2 e^{2 x} . \\
& =4 A e^{2 x}=2 e^{2 x} \Rightarrow A=1 / 2 .
\end{aligned} \\
& \text { (3) General solution } y_{c}+y_{p:} \text { : } \\
& y=c_{1} e^{2 x}+c_{2} e^{-2 x}+\frac{1}{2} x e^{2 x} .
\end{aligned}
$$

$$
a y "+b y^{\prime}+c y=f
$$

Assume that only finitely many linearly independent functions appears in

$$
\text { the sequence } f, f^{\prime \prime}, f^{\prime \prime}, f^{\prime \prime \prime}, \ldots
$$

$$
\longrightarrow
$$

RULE 1 Method of Undetermined Coefficients

Suppose that no term appearing either in $f(x)$ or in any of its derivatives satisfies the associated homogeneous equation $L y=0$. Then take as a trial solution for y_{p} a linear combination of all linearly independent such terms and their derivatives. Then determine the coefficients by substitution of this trial solution into the nonhomogeneous equation $L y=f(x)$.

To solve constant coefficient linear differential equation $a y^{\prime \prime}+b y^{\prime}+c y=f(x)$,

1. Find the homogeneous (ie. complementary) solutions y_{c}
2. Check that f and its derivatives don't satisfy the homogeneous equation
3. Determine y_{p} by guessing $y_{p}=$ linear combination of f and its derivatives, and solve for coefficients
4. General solution is $y_{c}+y_{p}$

$6: 59$.

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
f=e^{k x} . \\
f^{\prime}=k e^{k x} \\
f^{\prime \prime}=k^{2} e^{k x}
\end{array} \rightarrow y=e^{k \neq} \quad \text { Examples: }
\end{array} \\
& \begin{array}{l}
E-x . \\
f=\cos x \\
F^{\prime}=-\sin x \\
f^{\prime \prime}=-\cos x \\
E_{x}
\end{array} \rightarrow y=A \cos x+B \sin 1 x \\
& \cdot y^{\prime \prime}-4 y=2 e^{3 x} ? \quad y_{p}=A e^{3 x} \\
& \text { - } y^{\prime \prime}+3 y^{\prime}+4 y=3 x+2 y=\AA x+B \text {. } \\
& \text { - } 3 y^{\prime \prime}+3 y^{\prime}-2 y=2 \cos x \quad y=A \cos +B \sin x . \\
& \text { - } y^{\prime \prime}-4 y=2 e^{2 x} \\
& \text { X doesalf } \\
& f^{\prime}=e^{x}+x e^{x} \\
& \rightarrow y=A x e^{x}+B e^{x} . \\
& \text { work. } \\
& y=A(3 x+2)+B 3 . \\
& =3 A+(2 A+3 B
\end{aligned}
$$

The case when f is a solution to the homogeneous equation

How to deal with this situation?

$$
y^{\prime \prime}-4 y=2 e^{2 x}
$$

Want to take $y_{p}=A e^{2 x}$ as trial solution, but it's a solution to the homogeneous equation.

Solution: Multiply trial solution by x.

$$
y_{c}=A e^{2 x}+B e^{-2 x}
$$

In general:

Assume that only finitely many linearly independent functions appears in

$$
\text { the sequence } f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, \ldots
$$

RULE 2 Method of Undetermined Coefficients
If the function $f(x)$ is of either form in (14), take as the trial solution

$$
\begin{align*}
y_{p}(x)= & x^{s}\left[\left(A_{0}+A_{1} x+A_{2} x^{2}+\cdots+A_{m} x^{m}\right) e^{r x} \cos k x\right. \\
& \left.+\left(B_{0}+B_{1} x+B_{2} x^{2}+\cdots+B_{m} x^{m}\right) e^{r x} \sin k x\right] \tag{15}
\end{align*}
$$

where s is the smallest nonnegative integer such that no term in y_{p} duplicates a term in the complementary function y_{c}. Then determine the coefficients in Eq. (15) by substituting y_{p} into the nonhomogeneous equation.

Translation: keep multiplying trial solution by x until it's no longer a solution to the homogeneous equation.

Consider the equation
$y^{\prime \prime}+y=\tan (x)$.

Homogeneous solutions:
$y=A \cos (x)+B \sin (x)$
Unfortunately, the sequence $f, f^{\prime}, f^{\prime \prime}, \ldots$ has infinitely many linearly independent terms.
$\sec ^{2} x, \quad 2 \sec ^{2} x \tan x, \quad 4 \sec ^{2} x \tan ^{2} x+2 \sec ^{4} x, \quad \ldots$
I.e. The vector space spanned by f and its derivatives is infinite dimensional.

We can't use method of undetermined coefficients.

Variation of parameters

- Guess $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ where y_{1}, y_{2} are the homogeneous solutions.

Plug this into $L\left[y_{p}\right]$ and see what this tells us about u_{1}, u_{2}
$f(x)$

- We are free to make one more additional constraint to make our computation easier

$$
\begin{aligned}
& y_{1}=u_{1} y_{1}+u_{2} y_{2} \quad \text { prod rule } \\
& \Rightarrow y_{p}^{\prime}=\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+\underline{\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)}
\end{aligned}
$$

$$
\text { Assume } \underline{\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)}=0 \text {. }
$$

(3)

$$
y_{p}^{\prime \prime}=u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}
$$

(4) Sicker $=1,2$

$$
\text { (4) Since } y_{i}^{\prime \prime}+P_{y_{i}}+Q y_{i}=0
$$

Therotone.

$$
\text { so } \quad y_{i}^{c 1}=-P_{y_{i}}^{\prime}-Q y_{c}
$$

$$
y_{p}^{\prime r}+p y_{p}^{\prime}+Q y_{p}=a_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}
$$

i.e.

$$
\begin{array}{r}
L\left[y_{p}\right]= \\
\Rightarrow \begin{array}{l}
a_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f \\
\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)=0 . \\
\Rightarrow\left(\begin{array}{ll}
y_{1}^{\prime} & u_{2}^{\prime} \\
y_{1} & u_{2}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{f}{0}
\end{array} .
\end{array}
$$

THEOREM 1 Variation of Parameters
If the nonhomogeneous equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)$ has complementry function $y_{c}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$, then a particular solution is given by

$$
\begin{equation*}
y_{p}(x)=-y_{1}(x) \int \frac{y_{2}(x) f(x)}{W(x)} d x+y_{2}(x) \int \frac{y_{1}(x) f(x)}{W(x)} d x \tag{33}
\end{equation*}
$$

where $W=W\left(y_{1}, y_{2}\right)$ is the Wronskian of the two independent solutions y_{1} and y_{2} of the associated homogeneous equation.

For

$$
\begin{aligned}
& y_{1}=\cos x \\
& y_{2}=\sin x \\
& f(x)=\tan x . \\
& y_{p}=
\end{aligned}
$$

See textbook, last er.

Consider a system of two linear equations in two variables.

$$
\begin{gathered}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{gathered}
$$

The solution using Cramer's Rule is given as

$$
x=\frac{D_{x}}{D}=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{cc}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}, D \neq 0 ; y=\frac{D_{y}}{D}=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left\lvert\, \begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right.}, D \neq 0 .
$$

$$
\left(\begin{array}{ll}
y_{1}^{\prime} & u_{2}^{\prime} \\
y_{1} & u_{2}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{f}{0}
$$

Sola is

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{f y_{2}}{y_{1}^{\prime} u_{2}-y_{1} y_{2}^{\prime}}, u_{2}^{\prime}=\frac{-f y_{1}}{y_{1}^{\prime} y_{2}-y_{1} y_{2} \prime} \\
& u_{1}^{\prime}=\frac{-f y_{2}}{\omega\left(y_{1}, y_{2}\right)}, u_{2}^{\prime}=\frac{f y_{1}}{\omega\left(y_{1} y_{2}\right)} \\
& u_{1}=\int \frac{-f y_{2}}{\omega\left(y_{1}, y_{2}\right)} d x \quad u_{2}=\frac{f y_{1}}{w\left(y_{1}, y_{2}\right)} d x
\end{aligned}
$$

$y=u_{1} y_{1}+u_{2} u_{2}$.

Back to our example:

$y^{\prime \prime}+y=\tan (x)$.

Homogeneous solutions:
$y_{1}=\cos (x), y_{2}=\sin (x)$

Why does method of undetermined coefficients work? Assume that only finitely many linearly independent fulctions appears in the sequence $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, \ldots$

RULE 1 Method of Undetermined Coefficients

Suppose that no term appearing either in $f(x)$ or in any of its derivatives satisfies the associated homogeneous equation $L y=0$. Then take as a trial solution for y_{p} a linear combination of all linearly independent such terms and their derivatives. Then determine the coefficients by substitution of this trial solution into the nonhomogeneous equation $L y=f(x)$.

Need to explain why $y_{p}=C_{0} f+C_{1} f^{\prime}+C_{2} f^{\prime \prime}+\cdots+C_{n} f^{(n)}$

Proof sketch:

1. Let V be the vector space spanned by $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, \ldots$

We are assuming that V is finite dimensional.
2. Then L is a linear operator $V \rightarrow V$.
3. By the rank nullity theorem from linear algebra,
one of the two possibilities always holds:

$$
\text { - } L g=0 \text { for some } g \in V \text {, i.e. } \operatorname{dim}(\operatorname{ker} L)>0
$$

$$
\text { - } L g=\text { aay } h \in U \text {. }
$$

4. Therefore, if we assume that the first doesn't hold, then the second must hold.

What about rule 2?

RULE 2 Method of Undetermined Coefficients

If the function $f(x)$ is of either form in (14), take as the trial solution

$$
\begin{align*}
y_{p}(x)= & x^{s}\left[\left(A_{0}+A_{1} x+A_{2} x^{2}+\cdots+A_{m} x^{m}\right) e^{r x} \cos k x\right. \\
& \left.+\left(B_{0}+B_{1} x+B_{2} x^{2}+\cdots+B_{m} x^{m}\right) e^{r x} \sin k x\right] \tag{15}
\end{align*}
$$

where s is the smallest nonnegative integer such that no term in y_{p} duplicates a term in the complementary function y_{c}. Then determine the coefficients in Eq. (15) by substituting y_{p} into the nonhomogeneous equation.

$$
\text { Need to explain why } y_{p}=x^{s}\left(C_{0} f+C_{1} f^{\prime}+C_{2} f^{\prime \prime}+\cdots+C_{n} f^{(n)}\right)
$$

Proof sketch:

1. Let V be the vector space spanned by $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, \ldots$. We are assuming that V is finite dimensional.
2. Then L is a linear operator $V \rightarrow V$, and $\operatorname{dim}(\operatorname{ker} L)>0$.
3. Consider the vector space $W=\left\{x^{s} g: g \in V\right\}$.

- Check: If s is small enough, $L: W \rightarrow V$.
- Check: As s increases, $\operatorname{dim}(\operatorname{ker} L)$ decreases

4. Therefore, if s is just right, $\operatorname{dim}(\operatorname{ker} L)=0$ and so $L g=h$ always a solution $g \in W$.
