MAT303: Calc IV with applications

Lecture 12 - March 172021

Recently:

- Second order linear differential equations (Ch 3.1)

```
\mp@subsup{y}{}{\prime\prime}+p(x)\mp@subsup{y}{}{\prime}+q(x)y=0
```

- Homogeneous equations
- Principle of superposition
- Special case: constant coefficients
- Different cases depending on number of real roots
- Existence and uniqueness
- Linear independence, and general solutions

Last time:

- Higher order linear differential equations (Ch 3.2)

$$
\begin{equation*}
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=0 \tag{3}
\end{equation*}
$$

- Mostly the same as second order linear differential equations
- Difference: linear independence is more subtle
- Non-homogeneous equations

Today:

- Constant coefficient higher order linear differential equations

$$
>\quad a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

- Similar to $n=2$ case, but we will introduce some new tools:
- Linear Differential Operators
- Spend some more time on Euler's identity $e^{i x}=\cos (x)+i \sin (x)$

Consider the constant coefficient linear equation

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \tag{1}
\end{equation*}
$$

We can rewrite this as

$$
L y=0
$$

$$
a, D
$$

where $L=a_{n} D^{n}+a_{n-1} D^{n-1}+a_{n-2} D^{n-2}+\cdots+a_{0}$ is an operator
where $D=\frac{d}{d x}$ is the derivative operator
Examples of operator notation: operators,

$$
\text { Fact: } \quad(D-a)(D-b)=D^{2}-(a+b) D+a b
$$

why?

$$
\begin{aligned}
(D-a)(D-b) f & =(D-a)\left(f^{\prime}-b f\right) \\
& =D\left(f^{\prime}-b f^{\prime}\right)-a\left(f^{\prime}-b f\right) \\
& =f^{\prime \prime}-b f^{\prime}-a f^{\prime}+a b f \\
& =f^{\prime \prime}-(a+b) f^{\prime}+a b^{\prime} f \\
& =D^{2} f-(a+b) D f+a b f \\
& =\left(D^{2}-(a+b) D+a b\right) f
\end{aligned}
$$

Example: Find a solution of the differential equation $\left(D^{2}+5 D+6\right) y=0$.
We wat $\left(D^{2}+5 D+6\right) y=0$.

$$
\text { ie. } \quad(D+2)(D+3) y=0 \text {. }
$$

I could solve this just by
solving $\quad(D+3) y=0$.

$$
\therefore \text { e. } \quad y^{\prime}+3 y=0
$$

i.e. $\quad y^{\prime}=-3 y$

So $y=e^{-3 x}$ is a
solution.
Example:

$$
\begin{aligned}
& y-y^{\prime}=x^{2}+3 x \\
& y= \\
& \frac{1}{1-D}\left(x^{2}+3 x\right) \\
y= & \left(1+D+D^{2}+D^{3}+\cdots\right)\left(x^{2}+3 x\right) \\
= & x^{2}+3 x * 2+3+3+2 \\
= & x^{2}+5 x+5
\end{aligned}
$$

Verify:

$$
\begin{aligned}
y-y^{\prime} & =x^{2}+5 x+5-(2 x+5) \\
& =x^{2}+3 x
\end{aligned}
$$

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} .
$$

Let $p(x)$ be a polynomial of degree n. Then p has exactly n roots (possibly complex, possibly repeated).

Complex roots always appear in conjugate pairs $a+i b$ and $a-i b$
Example:

$$
\begin{array}{r}
x^{2}+1=0, \quad \text { roots are } 0+i \\
\text { and } 0-\bar{i}
\end{array}
$$

Consequence: Every polynourial of degree u can be written

$$
p(x)=\left(x-r_{1}\right) \cdot--\left(x-r_{n}\right)
$$

- It may be hard to find the roots (there is no "quadratic formula" for $n \geq 5$
- But we know by the theorem that they do exist

Let $i=\sqrt{-1}$, so $i^{2}=-1$.

$$
\begin{aligned}
& i^{2}=-1 \\
& i^{3}=i^{2} i=-i
\end{aligned}
$$

Euler's identity:

$$
e^{i x}=\cos x+i \sin (x)
$$

Recall power series:

$$
\begin{aligned}
& e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\frac{x^{7}}{7!}+\cdots \\
& \cos x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}=\frac{1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots}{} \begin{array}{l}
\sin (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}-x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{1}}{7!}+\cdots
\end{array}
\end{aligned}
$$

Egg.

$$
\begin{aligned}
e^{\bar{c} \pi} & =\cos \pi+i \sin (\pi) \\
& =-1+0
\end{aligned}
$$

$$
e^{i x}=1+(i x)+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}+\frac{(i x)^{5}}{5!}+\frac{(i x)^{6}}{6!}+\frac{(i x)^{7}}{7!}+\cdots
$$

$$
\begin{aligned}
& \frac{(i x)^{6}}{6!}+\frac{(i x)^{7}}{7!}+\cdots \\
& \frac{x^{5}}{5!}-\frac{x^{6}}{6!}-i \frac{x^{7}}{7!}
\end{aligned}
$$

$$
=\underline{1+i x}-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{i \frac{x^{5}}{5!}-\frac{x^{6}}{6!}-i \frac{x^{7}}{7!}}{}=\cos x+i \sin (x)
$$

Let's try to solve

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 \tag{1}
\end{equation*}
$$

Use our only trick: guess $y=e^{r x}$.
Sub in $y=e^{r x}, y^{\prime}=r e^{r x}, y^{\prime \prime}=r^{2} e^{r x}, \ldots$

$$
y^{(n)}=r^{n} e^{r x}
$$

$$
\text { get } a_{n} r^{n} e^{r x}+a_{n-1} r^{n-1} e^{r x}+\cdots+a_{1} r e^{r x}+a_{0} e^{r x}=0
$$

factor oe:

$$
\operatorname{er}\left(a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}\right)=0
$$

factor polynomial.

$$
a_{n} e^{r x}\left(r-r_{1}\right) \ldots\left(r-r_{n}\right)=0
$$

So we get solutions

$$
y=e^{r_{1} x}, \ldots, y=e^{r_{n} x}
$$

If the r_{1}, \ldots, r_{n} are distinct, the $e^{r_{1} x}, \ldots, e^{r_{n} x}$ are linearly independent. (Can compute Wronskian by induction).

So we have found n linearly independent solutions, so by the theory of last lecture, all solutions are of the form

$$
y=c_{1} e^{r_{1} x}+\cdots+c_{n} e^{r_{n} x}
$$

Product rale. $D(f g)=f D g+g D f$.
Characteristic equation has repeated real roots

If the r_{1}, \ldots, r_{n} not distinct, the $e^{r_{1} x}, \ldots, e^{r_{n} x}$ are dependent.
By the theory of last lecture, we are missing some solutions.
We deduce the missing solutions by using linear differential operators.
Suppose we have 2 distinct roots, r_{1} and r_{2}, where r_{2} is repeated k times.
\qquad
Original DE:

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

(1)

Operator Formulation:

$$
\begin{aligned}
& \left(a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{1} D^{1}+a_{0}\right) y=0 \\
= & a_{n}\left(D-r_{1}\right)\left(D-r_{2}\right)^{k} y=0
\end{aligned}
$$

$$
\text { Just solve }\left(D-r_{2}\right)^{k} y=0
$$

We already know $y=e^{r_{2} x}$ is
a sole to $\left(D-r_{2}\right)^{k} y=0$
Try solus of the form $y=u e^{r_{2} x}$. function
Notice:

$$
\begin{aligned}
& \left(D-r_{2}\right) u e^{r_{2} x}=D\left(u e^{r_{2} x}-r_{2}\left(u e^{r_{2} x}\right)\right. \\
& =(D u) e^{r_{2} x}+u D e^{r_{2} x}-r_{2}\left(u e^{r_{2} x}\right) \\
& =(D u) e^{r_{2} x}+u r_{2} e^{r_{2} x}-r_{2}\left(u e^{r_{2} x}\right) \\
& =
\end{aligned}
$$

Therefore

$$
\left(D-r_{2}\right)^{k}\left(u e^{r_{2} x}\right)=\left(D^{k} u\right) e^{r_{2} x}
$$

THEOREM 2 Repeated Roots
If the characteristic equation in (3) has a repeated root r of multiplicity k, then the part of a general solution of the differential equation in (1) corresponding to
r is of the form r is of the form
$>\quad\left(c_{1}+c_{2} x+c_{3} x^{2}+\cdots+c_{k} x^{k-1}\right) e^{r x}$.

If the r_{1}, \ldots, r_{n} not distinct, the $e^{r_{1} x}, \ldots, e^{r_{n} x}$ are dependent.
By the theory of last lecture, we are missing some solutions. We deduce the missing solutions by using linear differential operators.

Suppose we have 2 distinct roots, r_{1} and r_{2}, where r_{2} is repeated k times.
Just solve $\left(D-r_{2}\right)^{k} y=0$
Try solus of the form $y=u e^{r_{2}} x$
Notice:

$$
\begin{aligned}
& \left(D-r_{2}\right) u e^{r_{2} x}=D\left(u e^{r_{2} x}\right)-r_{2}\left(u e^{r_{2} x}\right) \\
& =(D u) e^{r_{2} x}+u D e^{r_{2} x}-r_{2}\left(u e^{r_{2} x}\right) \\
& =(D u) e^{r_{2} x}+u r_{2} e^{r_{2} x}-r_{2}\left(u e^{r_{2} x}\right) \\
& =\left(D \omega e^{r_{2} x} .\right.
\end{aligned}
$$

So we want. ($\left.D^{k} u\right) e^{r_{2} x}=0$
Could tolce $u=\left(c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{k}, x^{k-1}\right)$.

In other words, werse fond k deferent solutions to
$\left(D-r_{2}\right)^{k} y=0$, which are all solutions to $\begin{aligned} & a_{n}\left(D-r_{1}\right)\left(D-r_{2}\right)^{k} y=0 \\ & 11\end{aligned}$

$$
>\quad a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0,
$$

The $l c$ solutions are. $e^{r_{2} x}, x e^{r_{2} x} \cdots, x^{k-1} e^{r_{2} x}$.
(Wronskian \Rightarrow linearly independent).
THEOREM 2 Repeated Roots
If the characteristic equation in (3) has a repeated root r of multiplicity k, then the part of a general solution of the differential equation in (1) corresponding to r is of the form
$>$ \qquad $k=3$

Example: Find a general solution of the fifth-order differential equation

$$
9 y^{(5)}-6 y^{(4)}+y^{(3)}=0
$$

Subbing in $y=e^{r x}$
\downarrow
Characteristic equation:

$$
\begin{aligned}
& 9 r^{5}-6 r^{4}+r^{3}=0 \\
\Rightarrow & r^{3}\left(9 r^{2}-6 r+1\right)=0 \\
\Rightarrow & r^{3}(3 r-1)^{2}=0 .
\end{aligned}
$$

roots: $0,0,0, \frac{1}{3}, \frac{1}{3}$.

So

$$
\begin{aligned}
& y=e^{o x}=1 \quad \text { is a sol } \\
& y=x-1 \\
& y=x^{2} .
\end{aligned}
$$

$$
y=e^{1 / 3 x}
$$

is another sola
$y=x e^{1 / 3 x}$ is another sol
General sola:

$$
y=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} e^{1 / 3 x}+c_{5} x e^{1 / 3 x}
$$

$$
\cos (-y)=\cos (y)
$$

Characteristic equation has complex roots

If the r_{1} and r_{2} are complex conjugate roots, $r_{1}, r_{2}=a \pm i b$, We get the two contributions $e^{r_{1} x}$ and $e^{r_{2} x}$ to the general solution.

We would prefer real solutions. We can get these by using Euler's formula.

We have 2 solus:

$$
\begin{aligned}
& y_{1}=e^{(a+i b) x}, y_{2}=e^{(a-i b) x} \\
& y_{1}=e^{a x} e^{i b x}=e^{a x}(\cos (b x)+i \sin (b x)) \\
& y_{2}=e^{a x-i b x}=e^{a x}(\cos (b x)-i \sin (b x))-
\end{aligned}
$$

So $\frac{1}{2}\left(y_{1}+y_{2}\right)=e^{d x} \cos (b x)$ is a real sol and $\frac{1}{2 i}\left(y_{1}-y_{2}\right)=e^{a x} \sin \left(b_{x}\right)$ aroflaer sol.

Check: $e^{a x} \cos (b x)$ and $e^{a x} \sin (b x)$ ave independent.

THEOREM 3 Complex Roots If the characteristic equation in (3) has an unrepeated pair of complex conjugate roots $a \pm b i$ (with $b \neq 0$), then the corresponding part of a general solution of Eq. (1) has the form
$>$

Example: Find a general solution of $\quad y^{(4)}+4 y=0$

Today:

- Constant coefficient higher order linear differential equations

$$
>\quad a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0,
$$

- Characteristic equation arises from substituting $y=e^{r x}$
- If roots of characteristic equation are distinct, general solution is

$$
y=c_{1} e^{r_{1} x}+\cdots+c_{n} e^{r_{n} x}
$$

- For a repeated root r of order k, the contribution to the general solution is

$$
y=\left(c_{1}+c_{2} x+c_{3} x^{2}+\cdots+c_{k} x^{k-1}\right) e^{r x}
$$

- For a non-repeated conjugate pair of complex roots $a \pm b i$,
the contribution to the general solution is

$$
y=e^{a x}\left(c_{1} \cos (b x)+c_{2} \sin (b x)\right)
$$

Forr repeated pairs of complex roots of order k, the contribution is
$y=\left(c_{1}+c_{2} x+c_{3} x^{2}+\cdots+c_{k} x^{k-1}\right) e^{a x} \cos (b x)+\left(d_{1}+d_{2} x+d_{3} x^{2}+\cdots+d_{k} x^{k-1}\right) e^{a x} \sin (b x)$

