MAT303: Calc IV with applications

Lecture 12 - March 17 2021

Today

Recently:

- Second order linear differential equations (Ch 3.1)
 - Homogeneous equations
 - Principle of superposition
 - · Special case: constant coefficients
 - · Different cases depending on number of real roots
 - Existence and uniqueness
 - · Linear independence, and general solutions

Last time:

- Higher order linear differential equations (Ch 3.2)
- · Mostly the same as second order linear differential equations
 - Difference: linear independence is more subtle
- Non-homogeneous equations

Today:

- Constant coefficient higher order linear differential equations
- Similar to n = 2 case, but we will introduce some new tools:
 - Linear Differential Operators
- Spend some more time on Euler's identity $e^{ix} = \cos(x) + i\sin(x)$

.

 $y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0.$

(1)

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0,$$

$$y'' + p(x)y' + q(x)y = 0$$

Linear differential operators

$$\begin{array}{c} y \rightarrow (1) \rightarrow \\ y \rightarrow (2) \rightarrow \\ \end{array}$$
Consider the constant coefficient linear equation

$$\begin{array}{c} y \rightarrow (2) \rightarrow \\ \end{array}$$
Consider the constant coefficient linear equation

$$\begin{array}{c} y \rightarrow (2) \rightarrow \\ \end{array}$$
We can rewrite this as

$$\begin{array}{c} y = 0 \\ y = 0 \\ \end{array}$$
Where $L = a_n D^n + a_{n-1} D^{n-1} + a_{n-2} D^{n-2} + \cdots + a_0$ is an operator
where $D = \frac{d}{dx}$ is the derivative operator
Examples of operator notation:

$$\begin{array}{c} y = 0 \\ \end{array}$$
We want $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use wat $(D^2 + 5D + 6)y = 0.$
Use $(D^2 +$

Qnx"+ Q1-1 x" + --- + 40 -

Let p(x) be a polynomial of degree n. Then p has exactly n roots (possibly complex, possibly repeated).

Complex roots always appear in conjugate pairs a + ib and a - ib

Example: $\chi^{2+1}=0$, roots are oric and $\theta-\overline{e}$ <u>Consequence</u>: Eveny polynomial of degree m can be written $p(x)=(x-r_1), ---(x-r_n),$

- It may be hard to find the roots (there is no "quadratic formula" for $n \ge 5$
- · But we know by the theorem that they do exist

Recall: Complex numbers and Euler's identity

Simplest case: characteristic equation has distinct real roots

Let's try to solve $a_n v^{(n)} + a_{n-1} v^{(n-1)} + \dots + a_2 v'' + a_1 y' + a_0 y = 0,$ (1)> Use our only trick: guess $y = e^{rx}$. Sub in y=erx y'=rerx, y"=r2erx $q^{(n)} = r^n e^{r \chi}$ get $a_n r^n e^{rx} + a_{n-1} e^{rx} + \dots + a_r e^{rx} + a_s e^{rx} = 0.$ factor out: $e^{i\tau}\left(a_{n}r^{n}+a_{n-1}r^{n-1}+\alpha_{1}r+\alpha_{0}\right)=0.$ factor polynomial: $a_{n}e^{r}(r-r_{n})=0.$ So we get solutions $y = e^{r_i x}$, $y = e^{r_i x}$.

If the r_1, \ldots, r_n are distinct, the $e^{r_1 x}, \ldots, e^{r_n x}$ are linearly independent. (Can compute Wronskian by induction).

So we have found n linearly independent solutions, so by the theory of last lecture, all solutions are of the form

$$y = c_1 e^{r_1 x} + \dots + c_n e^{r_n x}$$

6

Product rule. D(fg) = f Dg + g Df.

Characteristic equation has repeated real roots

Characteristic equation has repeated real roots

If the r_1, \ldots, r_n not distinct, the $e^{r_1 x}, \ldots, e^{r_n x}$ are dependent. By the theory of last lecture, we are missing some solutions. We deduce the missing solutions by using linear differential operators. Suppose we have 2 distinct roots, r_1 and r_2 , where r_2 is repeated k times.

Just solve
$$(D - \delta_{2})^{k} y = 0$$

Try solus of the form $y = ue^{r_{2}x}$
Notice:
 $(D - r_{2})ue^{r_{2}x} = D(ue^{r_{2}x}) - r_{2}(ue^{r_{2}x})$
 $= (Du)e^{r_{2}x} + uDe^{r_{2}x} - r_{2}(ue^{r_{2}x})$
 $= (Du)e^{r_{2}x} + ur_{2}e^{r_{2}x} - r_{2}(ue^{r_{2}x})$
 $= (Du)e^{r_{2}x}$.
Therefore
 $(D - r_{2})^{k}(ue^{r_{2}x}) = (D^{k}u)e^{r_{2}x}$
So use wart. $(D^{k}u)e^{r_{2}x} = 0$
Could tolve $u = (c_{0}+c_{1}x+c_{2}x^{2}+\dots+)$

Notice that
In other woords, uselve found

$$k$$
 different solutions to
 $(D - \sigma_2)^k y = 0$, which are all
solutions to $a_n(D - r_1)(D - \sigma_2)^k y = 0$
 (1)
The k solutions are.
 $2^{f_{2x}}, \kappa e^{r_{2x}} - - , \kappa^{k-1} e^{r_{2x}}$.
(Wronskian \Rightarrow linearly independent).

THEOREM 2 Repeated Roots

If the characteristic equation in (3) has a repeated root r of multiplicity k, then the part of a general solution of the differential equation in (1) corresponding to r is of the form

 $(c_1 + c_2 x + c_3 x^2 + \dots + c_k x^{k-1})e^{rx}$

(14)

Example

Example: Find a general solution of the fifth-order differential equation

$$9y^{(5)} - 6y^{(4)} + y^{(3)} = 0$$

Subbing in $y = e^{rx}$
Characteristic equation;
 $q_{r} 5 - 6r + r^{3} = 0$
 $\Rightarrow r^{3}(q_{r}^{2} - 6r + 1) =$
 $\Rightarrow r^{3}(3r - 1)^{2} = 0$.
Foots: $0_{1}0_{1}0_{1} + \frac{1}{3}, \frac{1}{3}.$

0

-

$$S = e^{\sigma x} = 1$$
 is a solution

$$y = \pi \cdot I$$

$$y = x^{2} \cdot I$$

$$y = e^{i/3 \times}$$
is another solution

$$y = x e^{i/3 \times}$$
is another solution

$$\frac{General}{y = c_{1} + c_{2} \times + c_{3} \times 2 + c_{4} e^{i/3 \times} + c_{5} \times e^{i/3 \times}$$

We get the two contributions $e^{r_1 x}$ and $e^{r_2 x}$ to the general solution. We would prefer real solutions. We can get these by using Euler's formula. $a_n v^{(n)} + a_{n-1} v^{(n-1)} + \dots + a_2 v'' + a_1 v' + a_0 v = 0,$ (1)We have Z solus: y, = e , y= e y1 = eaxeibx = eax(cos(bx) eisin(bx)) 42= e e = e e (co sbx) - i sin(bx)) So (y,+yz) = e cos(bx) is a real soln. and 12i(y,-y2) = ear sin(bx) another sola.

If the r_1 and r_2 are complex conjugate roots, $r_1, r_2 = a \pm ib$,

Characteristic equation has complex roots

cos(-y) = cos(y)sin(-y) = -sin(y).

THEOREM 3 Complex Roots

If the characteristic equation in (3) has an unrepeated pair of complex conjugate roots $a \pm bi$ (with $b \neq 0$), then the corresponding part of a general solution of Eq. (1) has the form

(21)

Example: Find a general solution of $y^{(4)} + 4y = 0$

Example

Today:

- · Constant coefficient higher order linear differential equations
 - Characteristic equation arises from substituting $y = e^{rx}$
 - · If roots of characteristic equation are distinct, general solution is

$$y = c_1 e^{r_1 x} + \dots + c_n e^{r_n x}$$

• For a repeated root r of order k, the contribution to the general solution is

 $y = (c_1 + c_2 x + c_3 x^2 + \dots + c_k x^{k-1})e^{rx}$

 For a non-repeated conjugate pair of complex roots a ± bi, the contribution to the general solution is

 $y = e^{ax}(c_1\cos(bx) + c_2\sin(bx))$

For repeated pairs of complex roots of order k, the contribution is

 $y = (c_1 + c_2 x + c_3 x^2 + \dots + c_k x^{k-1})e^{ax}\cos(bx) + (d_1 + d_2 x + d_3 x^2 + \dots + d_k x^{k-1})e^{ax}\sin(bx)$

≻

 $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0,$

(1)