MAT303: Calc IV with applications

Lecture 11 - March 15 2021

Today

Recently:

- Second order linear differential equations (Ch 3.1)
 - · Homogeneous equations
 - Principle of superposition
 - Special case: constant coefficients
 - · Different cases depending on number of real roots
 - · Existence and uniqueness
 - · Linear independence, and general solutions

ay"+ by + cy = 0

Today:

- Higher order linear differential equations (Ch 3.2)
- · Mostly the same as second order linear differential equations
 - Difference: linear independence is more subtle
- Non-homogeneous equations

Suppose we know that the 3rd order linear differential equation

 $y^{(3)} + 3y'' + 4y' + 12y = 0$

has solutions $y_1(x) = e^{-3x}$, $y_2(x) = \cos 2x$, $y_3(x) = \sin 2x$.

Principle of superposition

(3)

(4)

derivatives not experients-Recap: Principle of superposition for Generalization: Principle of superposition for linear homogeneous DE second order linear homogeneous DE $y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0.$ · For a second order linear differential equation **THEOREM 1** Principle of Superposition for Homogeneous y'' + p(x)y' + q(x)y = 0**Equations** Let y_1, y_2, \ldots, y_n be *n* solutions of the homogeneous linear equation in (3) on • If y_1 and y_2 are a pair of solutions, then $C_1y_1 + C_2y_2$ is another solution the interval I. If c_1, c_2, \ldots, c_n are constants, then the linear combination • Proof: Just plug $C_1y_1 + C_2y_2$ into the differential equation. $y = c_1 y_1 + c_2 y_2 + \dots + c_n y_n$ is also a solution of Eq. (3) on I. Principle of superposition for homogeneous equations Proof: Plug in y= C, y, + C242+ --+ C, yn. thear company = p(t) Gy" + p(t) G2 42 " + q(f) (,y' + q(f) (242 remeasures linear DE Essentially the same as for n=2. p(1) of + q(1) y + r(6) y = 0 (1) + r(4) (, y, r(4) + (292 Then for any C1, C2, Gg. + C292 $= = \overset{C}{=} \begin{pmatrix} \rho(t) \ \eta'' + & & & \\ & & \uparrow q(t) \ \eta' + & & + & \\ & & & \uparrow q(t) \ \eta'_{2} + & & + & \\ \end{pmatrix}$ is a soly to co Emplanation: Plug Cigitleyz anto (1): +r(t) y) r(t)+y2, p(+) (Gy" + C2 42") = 4.0+6.0 + q(t) (C,y' + (2y2') + r(+)(C,y,+(2y2) ≤ 0

Suppose we know that the 3rd order linear differential equation

 $y^{(3)} + 3y'' + 4y' + 12y = 0$

has solutions $y_1(x) = e^{-3x}$, $y_2(x) = \cos 2x$, $y_3(x) = \sin 2x$.

1. By the **principle of superposition**, we know that we can get new solutions by taking linear combinations:

 $y(x) = c_1 e^{-3x} + c_2 \cos 2x + c_3 \sin 2x$

Existence and uniqueness for higher order DE

· For a second order linear differential equation

y'' + p(x)y' + q(x)y = f(x)

• If p(x) and q(x) and f(x) are nice, for every choice of initial values $y(a) = \alpha$ and

 $y'(a) = \beta,$

a solution will exist.

THEOREM 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p, q, and f are continuous on the open interval I containing the point a. Then, given any two numbers b_0 and b_1 , the equation

$$y'' + p(x)y' + q(x)y = f(x)$$
(8)

has a unique (that is, one and only one) solution on the entire interval I that satisfies the initial conditions

$$y(a) = b_0, \quad y'(a) = b_1.$$
 (11)

Generalization: Existence and uniqueness for linear homogeneous DE

- · If the coefficient functions are nice, then for every
- Nth order => need conditions on first derivatives 0...n-1 to specify solution completely.
 M instral conditions.

THEOREM 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p_1, p_2, \ldots, p_n , and f are continuous on the open interval I containing the point a. Then, given n numbers $b_0, b_1, \ldots, b_{n-1}$, the *n*th-order linear equation (Eq. (2))

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x)$$

has a unique (that is, one and only one) solution on the entire interval I that satisfies the n initial conditions

$$y(a) = b_0, \quad y'(a) = b_1, \quad \dots, \quad y^{(n-1)}(a) = b_{n-1}.$$
 (5)

Running example

Suppose we know that the 3rd order linear differential equation

 $y^{(3)} + 3y'' + 4y' + 12y = 0$

has solutions $y_1(x) = e^{-3x}$, $y_2(x) = \cos 2x$, $y_3(x) = \sin 2x$.

1. By the **principle of superposition**, we know that we can get new solutions by taking linear combinations:

 $y(x) = c_1 e^{-3x} + c_2 \cos 2x + c_3 \sin 2x$

 By the existence and uniqueness theorem for initial value problems, we know that there are solutions satisfying any initial conditions
 E.g. the solution to

y(0) = 0, y'(0) = 5, y''(0) = -39is $y(x) = -3e^{-3x} + 3\cos 2x - 2\sin 2x$.

We have

$$y(o) = -3 + 3 - 0 = 0.$$

 $y'(o) = 5$
 $y''(o) = -39.$

Linear independence

Last time:

Linear independence of two functions: Two functions are linearly independent if they are not multiples of each other

E.g.
$$y_1 = e^{\chi}$$
 $y_{1}y_2$ dependent.
 $y_2 = 2e^{\chi}$ because $q_2 = 2q_1$.
 $y_3 = \chi e^{\chi}$ y_1, y_3 are independent.

Linear independence of more than two functions:

DEFINITION Linear Dependence of Functions

The *n* functions f_1, f_2, \ldots, f_n are said to be **linearly dependent** on the interval *I* provided that there exist constants c_1, c_2, \ldots, c_n not all zero such that

$$c_1 f_1 + c_2 f_2 + \dots + c_n f_n = 0$$

on I; that is,

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$

for all x in I.

How to check that functions f_1, \ldots, f_n are linearly independent?

Take the Wronskian:

•

(7)

$$W = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$$

Suppose we know that the 3rd order linear differential equation

 $y^{(3)} + 3y'' + 4y' + 12y = 0$

has solutions $y_1(x) = e^{-3x}$, $y_2(x) = \cos 2x$, $y_3(x) = \sin 2x$.

1. By the **principle of superposition**, we know that we can get new solutions by taking linear combinations:

 $y(x) = c_1 e^{-3x} + c_2 \cos 2x + c_3 \sin 2x$

- 2. By the existence and uniqueness theorem for initial value problems, we know that there are solutions satisfying any initial conditions, e.g. the solution to y(0) = 0, y'(0) = 5, y''(0) = -39 is y(x) = -3e^{-3x} + 3 cos 2x 2 sin 2x.
- 3. The functions y_1, y_2, y_3 are linearly independent because the Wronskian is nonzero:

$$W = \begin{vmatrix} e^{-3x} & \cos 2x & \sin 2x \\ -3e^{-3x} & -2\sin 2x & 2\cos 2x \\ 9e^{-3x} & -4\cos 2x & -4\sin 2x \end{vmatrix}$$
$$= e^{-3x} \begin{vmatrix} -2\sin 2x & 2\cos 2x \\ -4\cos 2x & -4\sin 2x \end{vmatrix} + 3e^{-3x} \begin{vmatrix} \cos 2x & \sin 2x \\ -4\cos 2x & -4\sin 2x \end{vmatrix}$$
$$+ 9e^{-3x} \begin{vmatrix} \cos 2x & \sin 2x \\ -2\sin 2x & 2\cos 2x \end{vmatrix} = 26e^{-3x} \neq 0.$$

$$= e^{-3\times} (8 \sin^2 2 \times + 8 \cos^2 2 \times)$$

General solutions of homogeneous equations

• For a second order linear homogeneous differential equation

Profesent

- If y_1 and y_2 are a pair of linearly independent solutions, then every solution is of the form $C_1y_1 + C_2y_2$.
- Contrast with the following statement which we already know:
 - If y_1 and y_2 are a pair of solutions, then $C_1y_1 + C_2y_2$ is another solution

Generalization: for the equation

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0.$$
 (3)

- If y_1, \ldots, y_n are linearly independent solutions, then all solutions are of the form $C_1y_1 + \cdots + C_ny_n$.
- · Contrast with the following statement which we already know:
 - If y_1, \ldots, y_n are solutions, then $C_1y_1 + \cdots + C_ny_n$ is another solution.

Technical statement (Ch 3.2):

THEOREM 4 General Solutions of Homogeneous Equations

Let y_1, y_2, \ldots, y_n be *n* linearly independent solutions of the homogeneous equation

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0$$
(3)

on an open interval I where the p_i are continuous. If Y is any solution whatsoever of Eq. (3), then there exist numbers c_1, c_2, \ldots, c_n such that

 $Y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$

for all x in I.

Running example

Suppose we know that the 3rd order linear differential equation

$$y^{(3)} + 3y'' + 4y' + 12y = 0 \tag{1}$$

has solutions $y_1(x) = e^{-3x}$, $y_2(x) = \cos 2x$, $y_3(x) = \sin 2x$.

1. By the **principle of superposition**, we know that we can get new solutions by taking linear combinations:

 $y(x) = c_1 e^{-3x} + c_2 \cos 2x + c_3 \sin 2x$ (2)

2. By the **existence and uniqueness theorem** for initial value problems, we know that there are solutions satisfying any initial conditions, e.g. the solution to

(*) y(0) = 0, y'(0) = 5, y''(0) = -39is $y(x) = -3e^{-3x} + 3\cos 2x - 2\sin 2x$.

- 3. The functions y_1, y_2, y_3 are **linearly independent** because the Wronskian is nonzero.
- 4. Therefore by Theorem 4, every solution of (1) is of the form (2).

So constraints are

$$y(0)=0 \Rightarrow C_1 + (2=0)$$

 $y'(0)=5 \Rightarrow -3c_1 + 2c_3 = 5$
 $y''(0)=-39 \Rightarrow 9c_1 - 4c_2 = -39$.
This is a denear system.
(a) $\binom{1}{2} = \binom{0}{2} \binom{c_1}{c_2} = \binom{0}{5} \binom{1}{-39}$
 $\binom{1}{2} \binom{1}{2} = \binom{0}{-39}$
 $\binom{1}{2} \binom{1}{2} = \binom{1}{2} \binom{1$

Nonhomogenous equations?

Much of what we said only applies to homogeneous equations

>
$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0.$$
 (3)

What can we say about non-homogeneous equations

 $y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x)?$

Example: Consider

$$y^{(3)} + 3y'' + 4y' + 12y = 12x + 4$$

Suppose we know that $y = x$ is a solution? Are there other solutions?
Caunat just halve $y = C_1 \times r$
Because
 $y^{(3)} + 3y^{c'} + 4y' + (2y)$
 $= 0 + 0 + 4 - C_1 + (2 - C_1)^2$
 $= C_1 (12x + 4)^2$, Nof a solution

Recall:
to
$$y(x) = c_1e^{-3x} + c_2\cos^2 x + c_3\sin(2x)$$
.
to $y(x) + 3y'' + 4y' + 12y = 0$.
Take $y = y_1 + \pi$, $y' = y'' + 1$
Then
 $y'^{3} + 3y'' + 4y' + (2y = -y'') + 0$
 $+ 3y'' + 0$
 $+ 4y'' + 4$.
 $+ (2y) + (2x)$
 $= 0 + (2x + 4)$
So $y = c_1e^{-3x} + c_2\cos^2 x + c_3\sin(2x) + x$.
To a solve the (x).
Once we have one solution, we can generate

more solutions by using the homogeneous solutions.

No.

Are there are any more?

Nonhomogenous equations?

Much of what we said only applies to homogeneous equations

>
$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0.$$
 (3)

What can we say about non-homogeneous equations

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x)?$$
 (2)

THEOREM 5 Solutions of Nonhomogeneous Equations

Let y_p be a particular solution of the nonhomogeneous equation in (2) on an open interval *I* where the functions p_i and *f* are continuous. Let y_1, y_2, \ldots, y_n be linearly independent solutions of the associated homogeneous equation in (3). If *Y* is any solution whatsoever of Eq. (2) on *I*, then there exist numbers c_1, c_2, \ldots, c_n such that

$$Y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x)$$
(16)
for all x in I.

Roughly speaking:

• All solutions are of the form $Y(x) = y_h + y_p$

where y_{i} is a solution to the homogeneous version of the equation.

Proof: Suppose
$$yp$$
 is a solution to (2) .
Let Y be another solution in (2) .
Then plug in $y=Y-yp$ is a LHS of (2)
Then
 $y^{(m)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y$
 $= y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y$
 $= (y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y)$
 $= f(x) - f(x) = 0$.
So, $Y-yp$ is a solution to homogeneous views.
Practical takeaway of all this: So $Y-yp = yh$.
• To find general solution of nonhomogeneous equation, So $Y=Yh+YP$.
• We only need to find a single solution y_p .
• For the homogeneous problem, we only need to find n linearly independent solutions

and then take their linear combination.