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Today:
» Second order linear differential equations (Ch 3.1)

» Existence and uniqueness

* Linear independence, and general solutions
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- Consider the functions y; = e¢* and y, = 3e".

Then Ay, + By, = Ce*. Aer « 2% -
&=t A —
Even though there are seemingly two parameta@ /-{and

really a one parameter family. A=
- Contrast with the situation y; = e* and y, = 3e?*.
Now y = Ay, + By, is genuinely a two-parameter family.
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Linear independence of functions

Linear independence of functions:
Two functions are linearly independent
if they are not multiples of each other
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Last time: finding the general solution to

Y'+5y'+6y=0

Substituted in y = ¢’" as a guess

.

Lead to the equation 7> + 57 + 6 = 0
« Therefore r = — 2, — 3.
« Soy, =e 2 andy, = ¢~ are ‘solutions’.
« By superposition, y = Ae % + Be ™ is a solution too
(for any choice of A and B)
Now suppose that we impose an initial condition y(0) = 2 and y'(0) = 3.
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Constant coefficients: motivating example

Things to notice:

* We needed 2 constraints to completely determine the solution.

Questions:
« Is this the only solution to the IVP?
* Why are there solutions at all? Will we always have solutions?

* What happens if we change the initial conditions? <—
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We see that if the characteristic has repeated roots we run
into problems:



Motivation: How do we know that solutions to differential equations
exist? How do we know that there’s only one solution?

THEOREM 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p, ¢, and f are continuous on the open interval /
containing the point a. Then, given any two numbers by and b, the equation

Y+ p@)y +q@)y = f(x) ®)

has a unique (that is, one and only one) solution on the entire interval / that
satisfies the initial conditions

y(@) =bo, y'(@)=bi. an
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Existence and uniqueness
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An example where the theorem does not apply: (VR7K we_-
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Lraeorly < T@JM\’: Back to our example:
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Back to our example: coche SX'LQJ/ ‘ THEOREM 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p, ¢, and f are continuous on the open interval /

Nz v D=
y'+35y'+6y=0 containing the point a. Then, given any two numbers b and by, the equation

"+ p(x)y +qx)y = f(x) ®)
« By superposition, y = Ae™> 4+ Be™'is a solution Yt Py +q()y = f

has a unique (that is, one and only one) solution on the entire interval I that

e ety Elises @ 21 2 satisfies the initial conditions

y(@) =bo, y'(a)=bi. 1D
However, we still don’t “know” that all the solutions are of the form

y =A€_ZI+B€_3[.

For that, we need this theorem: e: 2'1'

THEOREM 4 General Solutions of Homogeneous Equations

Let y; and y, be two linearly independent solutions of the homogeneous equation

(Eq. ) We  nee & Lo e oo e

V' 4+ p@)y +q(x)y =0
with p and ¢ continuous on the open interval 7. If Y is any solution whatsoever - 'Z‘r‘ U\‘J\ ._(%%-
of Eq. (9) on I, then there exist numbers c; and ¢, such that e
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Wronskian
We see now that it is important to know whether two functions Wronskian:
are linearly independent.

Here is an easy way to check if two functions are linearly independent. . f g
W(f,8) = o oelT f&'—f's.
THEOREM 3 Wronskians of Solutions
Suppose that y; and y, are two solutions of the homogeneous second-order linear .
equation (Eq. (9)) Example:y, =e™, y, =xe™* 1 fi= =TT - >
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» For a second order linear differeptial equation ‘l\omobmu/.)

'+ pX)y +gx)y =0

If p(x) and g(x) arelaic
a solution will exist7 ok ?(' w W 10 e

If y, and y, are a pair of linearly independent solutions, then every

<)

solution is of the form Cyy; + C,y,.

We can check if y; and Yy, are linearly independent by computing the Wronskian. (
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We have two solutions y; = e>* and h=e
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We also have solutions w; = e>* + ¢

andw, =e
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Conclusion: all solutions are of the form C;e~>* + C,e?* A
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for every choice of initial values y(a) = @ and y'(a) = f3,
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* For a second order linear differential equation

'+ pX)y +gx)y =0

If p(x) and g(x) are nice, for every choice of initial values y(a) = a and y'(a) = f,

a solution will exist.

If y, and y, are a pair of linearly independent solutions, then every

solution is of the form Cyy; + C,y,.

We can check if y; and Yy, are linearly independent by computing the Wronskian.
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Example:

&

Y'=2y'+y=0

We have two solutions y; = e* and y, = xe™.

Conclusion: all solutions are of the form C;e”* + C,xe*

(This always happens when the characteristic equation has repeated roots)
See Theorem 6 in textbook.

Summary:
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Constant coefficients: the general case

3 coeses:
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Constant coefficients: complex roots

Last time: finding the general solution to

Y'+2y+2y=0

Substituted in y = ¢’ as a guess
Lead to the equation 7>+ 2r +2 =0

Thereforer = — 1 £ 1.

Soy; = e and y, = e~V are ‘solutions’.




