MAT303: Calc IV with applications

Lecturelo - Marchio 2021

Last time:

- Second order linear differential equations (Ch 3.1)

$$
y^{\prime \prime}+p(r) y^{\prime}+q(x) y=r(x)
$$

- Homogeneous equations $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$
- Constant coefficient case
- Real roots
- Imaginary roots $y^{\prime \prime}+a y^{\prime}+b y=0$
y_{1} and y_{2} are 2 solutions,

$$
\text { Gey: Guess } y=e^{r t}
$$

Today:

- Second order linear differential equations (Ch 3.1)
- Existence and uniqueness
- Linear independence, and general solutions
- Wronslercen
- Consider the functions $y_{1}=e^{x}$ and $y_{2}=3 e^{x}$.

Then $A y_{1}+B y_{2}=C e^{x}$. $A e^{x}+3 B e^{x}=7 e^{x}=2$
 - Contrast with the situation $y_{1}=e^{x}$ and $y_{2}=3 e^{2 x}$.

Now $y=A y_{1}+B y_{2}$ is genuinely a two-parameter family.
$y=A e^{x}+3 B e^{2 x} \stackrel{x}{=} e^{x} \frac{\left(A+3 B e^{x}\right)}{C}$

Linear independence of functions:
Two functions are linearly independent
if they are not multiples of each other
i.e. $f=k g$

Example
$3 e^{x}$, e^{x} are linearly dependar because $3 e^{x}=3 \cdot e^{x}$.

Example
$e^{x}, 3 e^{2 x}$ are linearly independent because

$$
k e^{x} \neq 3 e^{2 x}
$$

Last time: finding the general solution to
$y^{\prime \prime}+5 y^{\prime}+6 y=0$

- Substituted in $y=e^{r t}$ as a guess
- Lead to the equation $r^{2}+5 r+6=0$
- Therefore $r=-2,-3$.
- So $y_{1}=e^{-2 t}$ and $y_{2}=e^{-3 t}$ are 'solutions'.
- By superposition, $y=A e^{-2 t}+B e^{-3 t}$ is a solution too (for any choice of A and B)

Now suppose that we impose an initial condition $y(0)=2$ and $y^{\prime}(0)=3$.
We have $y=A e^{-2 t}+B e^{-3 t}$
Want $y^{(0)}=A+B=2 \quad$ (1)
$y^{\prime}(t)=-2 A e^{-2 t}-3 B e^{-3 t}$ $y^{\prime}(0)=-2 A-3 B=3(2)$
So $2(1)+(2) \Rightarrow-B=7 \Rightarrow B=-7$
So using (1), $A=9$
So
$y(t)=9 e^{-2 t}-7 e^{-3 t}$.

Things to notice:

- We needed 2 constraints to completely determine the solution.

Questions:

- Is this the only solution to the IVP?
- Why are there solutions at all? Will we always have solutions?
- What happens if we change the initial conditions? \longleftarrow
$y(0)=2$
$y^{\prime}(b)=\$$
Then we wart

$$
\begin{gather*}
A+B=\alpha \tag{1}\\
-2 A-3 B=q
\end{gather*}
$$

Another motivating example:

$$
\begin{aligned}
& y^{\prime \prime}-2 y^{\prime}+y=0 \\
& y(0)=2 \\
& y^{\prime}(0)=3
\end{aligned}
$$

We see that if the characteristic has repeated roots we run

$$
\begin{aligned}
& \equiv\left(\begin{array}{cc}
+ & 1 \\
-2 & -3
\end{array}\right)\binom{A}{B}=\binom{\alpha}{B} \\
& \text { Solvable because } \\
& \text { deft }\left(\begin{array}{l}
1 \\
-2 \\
-2 \\
-3
\end{array}\right)=-5 \neq 0 .
\end{aligned}
$$

into problems:

Motivation: How do we know that solutions to differential equations exist? How do we know that there's only one solution?

THEOREM 2 Existence and Uniqueness for Linear Equations Suppose that the functions p, q, and f are continuous on the open interval I containing the point a. Then, given any two numbers b_{0} and b_{1}, the equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \tag{8}
\end{equation*}
$$

has a unique (that is, one and only one) solution on the entire interval I that satisfies the initial conditions

$$
\begin{equation*}
y(a)=b_{0}, \quad y^{\prime}(a)=b_{1} \tag{11}
\end{equation*}
$$

$$
x^{2}=-1
$$

No real solution.

6 \qquad

Conclude: solution exists, is
An example where the theorem does not apply:

$$
p(x) \text { is not }
$$

cts, so than doesolt
An example where the theorem does apply:

$$
\begin{aligned}
& y^{\prime \prime}+\frac{p(x)}{x^{-1} y^{\prime}}+6 y=0 \\
& y(1)=2 \\
& y^{\prime}(1)=3 \\
& a=1
\end{aligned}
$$

Conclusion:
There is a unique solo.

Back to our example:
$y^{\prime \prime}+5 y^{\prime}+6 y=0$

- By superposition, $y=A e^{-2 t}+B e^{-3 t}$ is a solution (for any choice of A and B)

However, we still don't "know" that all the solutions are of the form $y=A e^{-2 t}+B e^{-3 t}$.

For that, we need this theorem:

THEOREM 4 General Solutions of Homogeneous Equations
Let y_{1} and y_{2} be two linearly independent solutions of the homogeneous equation (Eq. (9))

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

with p and q continuous on the open interval I. If Y is any solution whatsoever of Eq. (9) on I, then there exist numbers c_{1} and c_{2} such that

$$
Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

for all x in I.

THEOREM 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p, q, and f are continuous on the open interval I containing the point a. Then, given any two numbers b_{0} and b_{1}, the equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \tag{8}
\end{equation*}
$$

has a unique (that is, one and only one) solution on the entire interval I that satisfies the initial conditions

$$
\begin{equation*}
y(a)=b_{0}, \quad y^{\prime}(a)=b_{1} . \tag{11}
\end{equation*}
$$

$$
\begin{aligned}
& y=e^{-2 t} \\
& y=e^{-3 t}
\end{aligned}
$$

We
need to be
check e

Gen

cud

incl eppendent.

We see now that it is important to know whether two functions are linearly independent.

Here is an easy way to check if two functions are linearly independent.

THEOREM 3 Wronskians of Solutions

Suppose that y_{1} and y_{2} are two solutions of the homogeneous second-order linear equation (Eq. (9))

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

on an open interval I on which p and q are continuous.
(a) If y_{1} and y_{2} are linearly dependent, then $W\left(y_{1}, y_{2}\right) \equiv 0$ on I.
(b) If y_{1} and y_{2} are linearly independent, then $W\left(y_{1}, y_{2}\right) \neq 0$ at each point of I.

Wronskian:
$W(f, g)=\left|\begin{array}{cc}f & g \\ f^{\prime} & g^{\prime}\end{array}\right|=f g^{\prime}-f^{\prime} g$.

Example: $y_{1}=e^{-x}, \quad y_{2}=x e^{-x}\left(y_{1}, y_{2}\right)=\left|y_{1}, y_{2}\right| \quad, \quad y_{1}^{\prime}=-e^{-x}, \quad y_{2}^{\prime}=e^{-x}-x e^{-x}$

$$
w^{\prime}\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=e^{-x}\left(e^{-x}-x e^{-x}\right)+e^{-x} \times e^{-x}
$$

$=e^{-2 x}-e^{-2 x} x+e^{-2 x} x$ $=e^{-2 x} \neq 0$

So t never
Example: $y_{1}=e^{-x}, \quad y_{2}=4 e^{-x}$

$$
y_{1}^{\prime}=-e^{-x} \quad y_{2}^{\prime}=-4 e^{-x}
$$

$$
\begin{array}{ll}
y_{1}=-e, \quad y_{2}=-4 e \\
W\left(y_{1}, y_{2}\right) & =-4 e^{-2 x}+4 e^{-2 x}=0
\end{array}
$$

So $y, 1 y_{2}$ cere Linearly dependent.
continuous at a -

- For a second order linear differential equation homogeneous

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

- If $p(x)$ and $q(x)$ are nice, for every choice of initial values $y(a)=\alpha$ and $y^{\prime}(a)=\beta$, a solution will exist. and if w: ll be unique.
- If y_{1} and y_{2} are a pair of linearly independent solutions, then every solution is of the form $C_{1} y_{1}+C_{2} y_{2}$.
- We can check if y_{1} and y_{2} are linearly independent by computing the Wronskian.

Example:

$$
\begin{aligned}
& f(x)=0 \\
& p(x)=0 \\
& q(x)=-4
\end{aligned}
$$

We have two solutions $y_{1}=e^{2 x}$ and $y_{2}=e^{-2 x}$.
We also have solutions $w_{1}=e^{2 x}+e^{-2 x}$ and $w_{2}=e^{2 x}-e^{-2 x}$.

Conclusion: all solutions are of the form $C_{1} e^{-2 x}+C_{2} e^{2 x}$

$$
\begin{array}{ll}
y_{1}=e^{2 x} & y_{2}=e^{-2 x} \\
y_{1}=2 e^{2 x} & y_{2}^{\prime}=-2 e^{-2 x} \\
w\left(y_{1}, y_{2}\right)=-2-2=-4 \neq 0
\end{array}
$$

So $\log (2), 4142$ are independent.
So by (1), all the solution
to $y^{\prime \prime}-4 y=0$ are of
12) the form $c_{1} e^{2 x}+c_{2} e^{-2 x}$.

$$
\begin{aligned}
& w_{1}=e^{2 x}+e^{-2 x} \\
& w_{1}=2 e^{2 x}-2 e^{-2 x} \\
& w_{2}=e^{2 x}-e^{-2 x} \\
&\left.w_{1}, w_{2}\right)=\left(2 e^{4}=2 e^{2 x}+2 e^{-2 x}\right. \\
&=\left(2 e^{-4 x}+4\right) \\
&=8
\end{aligned}
$$

So ω_{1}, ω_{2} independent. So

- For a second order linear differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

- If $p(x)$ and $q(x)$ are nice, for every choice of initial values $y(a)=\alpha$ and $y^{\prime}(a)=\beta$, a solution will exist.
- If y_{1} and y_{2} are a pair of linearly independent solutions, then every solution is of the form $C_{1} y_{1}+C_{2} y_{2}$.
- We can check if y_{1} and y_{2} are linearly independent by computing the Wronskian.

Example:

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

$$
\text { guess } y=e^{r t}
$$

Lámpic.

We have two solutions $y_{1}=e^{x}$ and $y_{2}=x e^{x} . \Rightarrow \sigma=1$

Conclusion: all solutions are of the form $C_{1} e^{x}+C_{2} x e^{x}$
(This always happens when the characteristic equation has repeated roots) See Theorem 6 in textbook.

Verity y_{2} :

$$
\begin{aligned}
y_{2}^{\prime}=e^{x}+x e^{x}, \quad \begin{aligned}
y_{2}^{\prime \prime} & =e^{x}+e^{x}+x e^{x} \\
& =2 e^{x}+x e^{x}
\end{aligned} .=\text {. }
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime \prime}-2 y^{\prime}+y & =\left(2 e^{x} \times x e^{x}\right) \\
& =2\left(e^{x}+x e^{x}\right) \\
& +x e^{x}
\end{aligned}
$$

$$
=0
$$

Also $W\left(e^{x}, r e^{x}\right) \neq 0$.
So $e^{x}, x e^{x}$ are indepartort.

Consider the $D E$

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{.}
\end{equation*}
$$

Guess $y=e^{r t}$.
Thea $y^{\prime \prime}=r^{2} e^{r t}, y^{\prime}=r e^{r t}$
So by (17),

$$
\begin{aligned}
& a t^{2} e^{r t}+b r e^{r t}+c e^{r t}=0 \\
& \Rightarrow\left(a r^{2}+b r+c\right) e^{r t}=0 \\
& \Rightarrow\left(a r^{2}+b r+c\right)=0
\end{aligned}
$$

3 cases:

1) 2 detour real solutions:

$$
r_{1}, r_{2}=\frac{-b_{1} \pm \sqrt{b^{2}-q_{a c}}}{2 a}
$$

So $g=e^{r_{1} t}, y_{2}=e^{r_{2} t}$ are solutions
So $y=A e^{r_{1} t}+B e^{r 2 t}$ is the general solution.

$$
\omega\left(e^{r_{1} t}, e^{r_{2}+}\right) \neq 0
$$

2) I real solution K check.

$$
r=\frac{-b}{2 a}
$$

Then $y_{1}=e^{\text {rt }}$ and $y_{2}=$ tertare solus
So $y=A e^{-t}+B \mathrm{e}^{\circ t}$ is the general
3) 2 complex solutions.

$$
l y=A e^{\mu t} \cos (\nu t)+B e^{\mu t} \sin (\nu t)
$$

is the geaseral solution.

Last time: finding the general solution to

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

- Substituted in $y=e^{r t}$ as a guess
- Lead to the equation $r^{2}+2 r+2=0$
- Therefore $r=-1 \pm i$.
- So $y_{1}=e^{(-1+i) t}$ and $y_{2}=e^{(-1-i) t}$ are 'solutions'.

