
MAT 303: Calculus IV with Applications
Fall 2016

Practice problems for Midterm 2
Solutions

Problem 1:

a) Find the general solution of the ODE y′′ + 4y = 4 cos(2t).

b) Make a sketch of yp vs. t, where yp(t) denotes the particular solution found in part a).
What is the pseudo-period of the oscillation and the time varying amplitude?

Solution. The characteristic equation for the homogeneous ODE is r2 + 4 = 0, which has
solutions r = ±2i. The homogeneous solution is yh(t) = C1 cos(2t) +C2 sin(2t). We look for
particular solutions yp(t) = t(A cos(2t) +B sin(2t)). We compute

y′p(t) = A cos(2t) +B sin(2t) + 2t(−A sin(2t) +B cos(2t))

y′′p(t) = −4A sin(2t) + 4B cos(2t)− 4t(A cos(2t) +B sin(2t)).

Plugging these in the initial ODE we find

y′′p + 4yp = −4A sin(2t) + 4B cos(2t) = 4 cos(2t),

which gives A = 0 and B = 1. Hence a particular solution is yp(t) = t sin(2t). The amplitude

is A(t) = t, the frequency is ω = 2, so the period is T =
2π

ω
= π. The general solution is

y = yh + yp = C1 cos(2t) + (C2 + t) sin(2t).
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Problem 2: Consider the 4th order ODE y(4) + 4y′′ = f(x).

a) Obtain the homogeneous solution.

b) For each case given below, give the general form of the particular solution using the
method of undetermined coefficients. Do not evaluate the coefficients.

1. f(x) = 5 + 8x3 2. f(x) = x sin(5x)

3. f(x) = cos(2x) 4. f(x) = 2 sin2(x)

Solution.

a) The characteristic equation is r4 + 4r2 = 0, which has roots r = 0 (repeated root of
order 2) and r = ±2i. The homogeneous solution is

yh(x) = C1 + C2x+ C3 cos(2x) + C4 sin(2x).

b) 1. yp = x2(a0 + a1x+ a2x
2 + a3x

3)

2. yp = (a0 + a1x) cos(5x) + (b0 + b1x) sin(5x)

3. yp = x(A cos(2x) +B sin(2x))

4. Note that 2 sin2(x) = 1− cos(2x), hence yp = a0x
2 + x(A cos(2x) +B sin(2x)).

�

Problem 3: Consider the boundary value problem (BVP):

t2
d2y

dt2
+ t

dy

dt
+ λy = 0, 1 < t < e, y(1) =

dy

dt
(e) = 0.

a) Find all positive values of λ ∈ (0,∞) such that the BVP has a nontrivial solution.

b) Determine a nontrivial solution corresponding to each of the values of λ found in part
a).

c) For what values of λ ∈ (0,∞) does the BVP admit a unique solution? What is that
solution.

Solution. We make the change of variables x = ln(t). Note that ln(1) = 0 and ln(e) = 1.
The equivalent BVP is

d2y

dx2
+ λy = 0, 0 < x < 1, y(0) = y′(1) = 0.

a) Let λ > 0. The general solution is y = c1 cos(
√
λx) + c2 sin(

√
λx). We have y(0) =

c1 = 0 and y′(1) = −c2
√
λ cos(

√
λ) = 0. This gives

√
λ =

(2n− 1)π

2
, n = 1, 2, . . ..
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b) y = c2 sin

(
(2n− 1)πx

2

)
= c2 sin

(
(2n− 1)π

2
ln(t)

)
, n = 1, 2, . . ..

c) For λ 6= (2n− 1)π

2
, n = 1, 2, . . ., the unique solution is y = 0.

�

Problem 4: Consider the ODE

t2y′′ + ty′ + λy = 0, t > 0. (1)

a) For λ = 4, find two solutions of (1), calculate their Wronskian and thus deduce that
they form a fundamental set of solutions.

b) Verify your answer for the Wronskian using Abel’s Theorem and a convenient initial
condition from part a).

c) Solve the eigenvalue problem (1) on 1 < t < e, subject to y(1) = y′(e) = 0, that is find
all values of λ such that the boundary value problem has a nontrivial solution and in
that case determine the latter.

Solution.

a) For λ = 4, the equation becomes t2y′′ + ty′ + λy = 0, t > 0. We make a change of
variables x = ln(t) and obtain the ODE y′′ + 4y = 0. The fundamental solutions are
y1 = cos(2x) and y2 = sin(2x) or y1(t) = cos(2 ln(t)) and y2(t) = sin(2 ln(t)). By differ-

entiating with respect to t, we find y′1(t) = −2

t
sin(2 ln(t)) and y′2(t) =

2

t
cos(2 ln(t)).

For t > 0, the Wronskian is

W (y1, y2) =
2

t
cos2(2 ln(t)) +

2

t
sin2(2 ln(t)) =

2

t
.

Clearly W 6= 0 so y1, and y2 are linearly independent and form a fundamental set of
solutions.

b) We put the original ODE in the form

y′′ +
1

t
y′ +

4

t2
y = 0, t > 0.

By Abel’s theorem we get W = C exp

(
−
∫

1

t
dt

)
= C exp(− ln(t)) =

C

t
. From part

a), W (1) = 2, which gives C = 2.

c) By making a change of variables x = ln(t), we have to solve the eigenvalue problem

y′′ + 4y = 0, y(0) = 0, y′(1) = 0.

We find eigenvalues λn =

(
(2n− 1)π

2

)2

, for n = 1, 2, . . . and corresponding eigenfunc-

tions yn(x) = sin

(
(2n− 1)πx

2

)
, n = 1, 2, . . .. �
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Problem 5: Find the general solution of the system

x′1 = 4x1 + x2 + x3

x′2 = x1 + 4x2 + x3

x′3 = x1 + x2 + 4x3.

Solution. The system can be written as X ′ = AX, where

X =

 x1
x2
x3

 and A =

 4 1 1
1 4 1
1 1 4

 .

The characteristic polynomial of A is∣∣∣∣∣∣
4− λ 1 1

1 4− λ 1
1 1 4− λ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
6− λ 6− λ 6− λ

1 4− λ 1
1 1 4− λ

∣∣∣∣∣∣ = (6− λ)

∣∣∣∣∣∣
1 1 1
1 4− λ 1
1 1 4− λ

∣∣∣∣∣∣
= (6− λ)

∣∣∣∣∣∣
1 1 1
0 3− λ 0
0 0 3− λ

∣∣∣∣∣∣ = (6− λ)(3− λ)2.

The eigenvalues are λ1 = 6 (of algebraic multiplicity 1) and λ2 = 3 (of algebraic multiplicity
2). The eigenvectors for the eigenvalue λ2 = 3 are given by the equation (A− 3I3)v = 0. We
write  1 1 1

1 1 1
1 1 1

 v1
v2
v3

 =

 0
0
0


and obtain v1 + v2 + v3 = 0, hence v3 = −v1 − v2. Thus v1

v2
v3

 =

 v1
v2

−v1 − v2

 = v1

 1
0
−1

+ v2

 0
1
−1

 .

The geometric multiplicity is 2. Two linearly independent eigenvectors of λ2 = 3 are

w1 =

 1
0
−1

 and w2 =

 0
1
−1

 .

The eigenvectors for λ1 = 6 are solutions of −2 1 1
1 −2 1
1 1 −2

 v1
v2
v3

 =

 0
0
0

 .
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We find the following system of equations:

−2v1 + v2 + v3 = 0

v1 − 2v2 + v3 = 0

v1 + v2 − 2v3 = 0

The third equation is redundant. Subtracting the second equation from the first we get
−3v1 + 3v2 = 0, so v1 = v2. Substituting this in the first equation yields v3 = v1. It follows
that

w3 =

 1
1
1


is an eigenvector for λ1 = 6. The general solution for the given system of equations is

x(t) = c1e
3tw1 + c2e

3tw2 + c3w3e
6t.

�

Problem 6: Consider the differential equation

x2y′′ + xy′ − 9y = 0, x > 0.

We know that y1(x) = x3 is a solution to this ODE. Use the method of reduction of order
to find a second solution y2. Show that y1 and y2 are linearly independent.

Solution. Substitute y = vx3 in the given equation and simplify. We get the differential

equation xv′′ + 7v′ = 0, which is separable. We write
v′′

v′
= −7

x
and integrate. This gives

ln v′ = −7 lnx+ lnA, which yields v′ =
A

x7
and finally v(x) = − A

6x6
+B. With A = −6 and

B = 0 we get v(x) =
1

x6
, so y2(x) =

1

x3
.

To show linear independence, assume that ax3 + b
1

x3
= 0 for all x > 0. This is equivalent

to ax6 + b = 0. When x = 1 we get a+ b = 0. When x = 2 we get 64a+ b = 0, so the only
values of a and b for which both conditions are satisfied is a = b = 0. In conclusion, y1 and
y2 are two linearly independent solutions. �

Problem 7: Find the critical value of λ in which bifurcations occur in the system

ẋ = 1 + λx+ x2.

Sketch the phase portrait for various values of λ and the bifurcation diagram. Classify the
bifurcation.

Solution. The critical points c1 and c2 of the system verify 1 + λx+ x2 = 0, so

c1,2 =
−λ±

√
λ2 − 4

2
.
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Figure 1: The graph of λ2 − 4.

We have three cases to consider. First, suppose λ2 = 4. Then λ = ±2. For λ = 2, the

system has one critical point c = −λ
2

= −1, which is semi-stable, since f(x) = 1 + 2x+x2 =

(1 + x)2 ≥ 0 for all x. Similarly, for λ = −2, the system has one critical point c = −λ
2

= 1,

which is semi-stable, since f(x) = 1− 2x+ x2 = (1− x)2 ≥ 0 for all x.
If λ2 < 4, then −2 < λ < 2 and there are no critical points.
If λ2 > 4, then λ > 2 or λ < −2. The system has two distinct critical points:

c1 =
−λ−

√
λ2 − 4

2
(stable)

c2 =
−λ+

√
λ2 − 4

2
(unstable)

The function f(x) = 1 + λx + x2 is positive when x < c1 or x > c2, and negative when
c1 < x < c2.
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Figure 2: The bifurcation diagram.

The system undergoes a saddle-node bifurcation. �
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