MAT303: Calc IV with applications

Lecture 7 - February 242021

Midterm 1:

- Next Wednesday in lecture, proctored over zoom
- Allowed: textbook, lecture notes
- You will also be given a table of useful integrals.
- A random selection of students will be asked to set up a 10 minute meeting with me in the week after the exam to discuss their solutions
- It is only to verify that you did not cheat
- It's not meant to be very intense, it's usually pretty easy to determine between
- Someone who cheated
- Someone who did not

Last time: Ch 2.1 population models

$$
\frac{d P}{d t}=(\beta-\delta) P
$$

We saw how changing β, δ affected the behavior of the solution.

Today:
Ch 2.2 Analysis of $\frac{d P}{d t}=f(P)$

Example: Let k be a constant. What can we say about the solution to

$$
\frac{d x}{d t}=-k(x-A)
$$

Solution:

$$
x(t)=A+\left(x_{0}-A\right) e^{-k t}
$$

Conclusion:

- As $t \rightarrow \infty$, temperature x approaches A.
- Also, $x=A$ is a solution.

Actually, can find equilibrium solution just by setting $\frac{d x}{d t}=0$:

Example: Let k be a constant. What are the equilibrium solutions?

$$
\frac{d x}{d t}=k x(M-x)
$$

Question: As $t \rightarrow \infty$, what is the long run behavior of the system?

Question: As $t \rightarrow \infty$, which equilibrium solution do we approach?

Definition: An equilibrium solution $x=c$ to $\frac{d x}{d t}=f(x)$
is stable if:
Solutions $x(t)$ starting near c end up staying near c in the long run.

Definition: An equilibrium solution $x=c$ to $\frac{d x}{d t}=f(x)$ is unstable if it is not stable.

Example: Let k be a constant. Equilibrium solutions are $\mathrm{x}=\mathrm{M}$ and $\mathrm{x}=0$. Are they stable?

$$
\frac{d x}{d t}=k x(M-x)
$$

Definition: An equilibrium solution $x=c$ to $\frac{d x}{d t}=f(x)$
is stable if:
Solutions $x(t)$ starting near c end up staying near c in the long run.

Definition: An equilibrium solution $x=c$ to $\frac{d x}{d t}=f(x)$ is unstable if it is not stable.

Example: What are the equilibrium solutions? Are they stable?

$$
\frac{d x}{d t}=x^{2}-5 x+4
$$

What are the equilibrium solutions?
Are they stable?

$$
\frac{d x}{d t}=k x(M-x)-h
$$

Bifurcation and dependence on parameters

Consider:

$$
\frac{d x}{d t}=x(4-x)-h
$$

How does the qualitative nature of the solutions change when we modify h ?
https://www.desmos.com/calculator/u3x5w62sde
One interpretation: How does the number of equilibrium points depend on h ?

A bifurcation point for a parameter is a point at which the number of equilibrium solution changes.

FIGURE 2.2.12. The parabola $(c-2)^{2}=4-h$ is the bifurcation diagram for the differential equation $x^{\prime}=x(4-x)-h$.

Bifurcation diagram is a plot of parameter vs. the location of the equilibrium points.

