MAT303: Calc IV with applications

Lecture 7 - February 24 2021

Midterm 1:	
 Next Wednesday in lecture, proctored over zoom 	Last ti
 Allowed: textbook, lecture notes 	$\frac{dP}{dt} =$
 You will also be given a table of useful integrals. 	<i>ui</i>
 A random selection of students will be asked to set up a 	We sa
10 minute meeting with me in the week	
after the exam to discuss their solutions	
 It is only to verify that you did not cheat 	
 It's not meant to be very intense, it's usually 	loday:
pretty easy to determine between	Ch 2 2
 Someone who cheated 	
 Someone who did not 	

ime: Ch 2.1 population models

 $(\beta - \delta)P$

aw how changing β, δ affected the behavior of the solution.

-

2 Analysis of
$$\frac{dP}{dt} = f(P)$$

Example: Let k be a constant. What can we say about the solution to

$$\frac{dx}{dt} = -k(x-A)$$

Solution:

$$x(t) = A + \left(x_0 - A\right) e^{-kt}$$

Conclusion:

- As $t \to \infty$, temperature x approaches A.
- Also, x = A is a solution.

First order autonomous equations

Actually, can find equilibrium solution just by setting $\frac{dx}{dt} = 0$:

Example: Let k be a constant. What are the equilibrium solutions?

$$\frac{dx}{dt} = kx(M-x)$$

Question: As $t \to \infty$, what is the long run behavior of the system?

Question: As $t \to \infty$, which equilibrium solution do we approach?

Definition: An equilibrium solution x = c to $\frac{dx}{dt} = f(x)$

is **stable** if:

Solutions x(t) starting near c end up staying near c in the long run.

Definition: An equilibrium solution
$$x = c$$
 to $\frac{dx}{dt} = f(x)$

is **unstable** if it is not stable.

Example: Let k be a constant. Equilibrium solutions are x=M and x=0. Are they stable?

$$\frac{dx}{dt} = kx(M-x)$$

Definition: An equilibrium solution x = c to $\frac{dx}{dt} = f(x)$

is **stable** if:

Solutions x(t) starting near c end up staying near c in the long run.

Definition: An equilibrium solution x = c to $\frac{dx}{dt} = f(x)$

is **unstable** if it is not stable.

Example: What are the equilibrium solutions? Are they stable?

$$\frac{dx}{dt} = x^2 - 5x + 4$$

Example: Let k, M, h be constant. What are the equilibrium solutions? Are they stable?

$$\frac{dx}{dt} = kx(M-x) - h$$

Consider:

$$\frac{dx}{dt} = x(4-x) - h$$

How does the qualitative nature of the solutions change when we modify h?

https://www.desmos.com/calculator/u3x5w62sde

One interpretation: How does the number of equilibrium points depend on h?

A bifurcation point for a parameter is a point at which the number of equilibrium solution changes.

Bifurcation diagram is a plot of parameter vs. the location of the equilibrium points.

