MAT303: Calc IV with applications

Lecture 6 - February 22 2021

Last time:

• Ch 1.6 Substitution methods:

•
$$\frac{dy}{dx} = F(ax + by + c)$$

• $\frac{dy}{dx} = F\left(\frac{y}{x}\right)$
• $\frac{dy}{dx} + P(x)y = Q(x)y^n$

Today:

- A few more substitutions (Reducible)
- Ch 2.1 (general) population models

•
$$\frac{dP}{dt} = (\beta - \delta)P$$

Ch 2.2 Equilibrium solutions

By changing the functions β and δ we can model a large variety of phenomena.

Example: Solve
$$yy'' = (y')^2$$
 for y.

Substitution:

$$p = y' = \frac{dy}{dx}, \quad y'' = \frac{dp}{dx} = \frac{dp}{dy}\frac{dy}{dx} = p\frac{dp}{dy}$$

This substitution works whenever you want to solve an equation of the form $F\left(y,y',y''\right)=0.$

Example: Solve
$$yy'' = (y')^2$$
 for y.

Substitution:

$$p = y' = \frac{dy}{dx}, \quad y'' = \frac{dp}{dx} = \frac{dp}{dy}\frac{dy}{dx} = p\frac{dp}{dy}$$

This substitution works whenever you want to solve an equation of the form $F\left(y,y',y''\right)=0.$

There is another useful substitution when F(x, y', y'') = 0., see textbook Ch1.6.

2.1: Population models

$$\frac{dP}{dt} = (\beta - \delta)P$$

(General population model)

$$\frac{dP}{dt} = (\beta - \delta)P$$

Assume

- Death rate is 0
- Birth rate is constant

Exponential Growth

$$\frac{dP}{dt} = (\beta - \delta)P$$

Example 1	Suppose that an alligator population numbers 100 initially, and that its death rate is $\delta = 0$ (so
	none of the alligators is dying). If the birth rate is $\beta = (0.0005) P$ —and thus increases as the
	population does—then Eq. (1) gives the initial value problem

Assume

- Death rate is 0
- Birth rate is proportional to population

Finite-time explosion

$$\frac{dP}{dt} = (\beta - \delta)P$$

Assume

- Constant death rate
- Birth rate is linear and decreasing with respect to population.

Interactive Graph: https://www.desmos.com/calculator/iw4c9k5fv1

Notice:

• No matter what initial condition, the limiting population is

```
\lim P(t) = 150.
t \rightarrow \infty
```


$$\frac{dP}{dt} = (\beta - \delta)P$$

Assume

- Constant death rate
- Birth rate is linear and decreasing with respect to population.

$$\frac{dP}{dt} = kP(M - P)$$

Solution (next HW):

$$P(t) = \frac{MP_0}{P_0 + (M - P_0)e^{kMt}}$$

Notice:

- No matter what initial condition, the limiting population exists
- Limit population is $\lim P(t) = M$. $t \rightarrow \infty$

- 1. Limited environment:
 - Suppose environment can only support up to M individuals.
 - Growth rate $\beta \delta$ is proportional to M P.

• Then
$$\frac{dP}{dt} = (\beta - \delta)P = kP(M - P).$$

- 2. Competition situation:
 - Suppose birth rate constant, but deaths result from chance encounters between the members of the population.

• Then
$$\frac{dP}{dt} = (\beta - \alpha P)P = kP(M - P).$$

- 3. Suppose we are modeling disease spread in a constant size population M.
 - This time, P(t) represents the number of infected individuals.
 - Reasonable to assume that rate of new infections is proportional to P(M P).

• Thus
$$\frac{dP}{dt} = kP(M - P)$$
 again.

The same equation can have multiple interpretations.

Different models can give rise to the same equation.

Ways in which the logistic equation arises

$$\frac{dP}{dt} = (\beta - \delta)P$$

Assume

- Death rate is constant
- Birth rate is proportional to time

Doomsday vs Extinction

Sometimes useful for modeling certain endangered species.

$$\frac{dP}{dt} = (\beta - \delta)P$$

Assume

- Death rate is constant
- Birth rate is proportional to time

Doomsday vs Extinction

Sometimes useful for modeling certain endangered species.

Today:

• Ch 2.1 (general) population models

•
$$\frac{dP}{dt} = (\beta - \delta)P$$

• Ch 2.2 Equilibrium solutions

By changing the functions β and δ we can model and observe a large variety of phenomena:

- Exponential growth
- Bounded growth (logistic equation)
- Doomsday vs Extinction thresholds

2.2: Equilibrium solutions and stability

Example: Let k be a constant. What can we say about the solution to

$$\frac{dx}{dt} = -k(x-A)$$

Solution:

$$x(t) = A + \left(x_0 - A\right) e^{-kt}$$

Conclusion:

• As $t \to \infty$, temperature x approaches A.

Can get the same conclusion by looking at the phase diagram:

Example: Let k be a constant. What can we say about the solution to

$$\frac{dx}{dt} = kx(M-x)$$

Draw the phase diagram:

Conclusion:

First order autonomous:

 $\frac{dP}{dt} = f(P)$

- "Update rule" only depends on current state (not time!)
- Long term behavior is easy to figure out.

First order autonomous equations

