MAT303: Calc IV with applications

Lecture 5 - February 172021

- Ch 1.6 Exact differential equations and

Substitution methods

- Changing variables is a common operation
- Can make the equation solvable/simpler
- Can give more insight into the DE
- Can demonstrate similarities between DEs

Consider a function $f(x, y)$ of two variables.
$\frac{\partial}{\partial x}$ means "differentiate with respect to y "
$\frac{\partial}{\partial y}$ means "differentiate with respect to y "

Example: $f(x, y)=x^{2}+\sin (x)$

Then $\frac{\partial}{\partial y} f=$

And $\frac{\partial}{\partial x} f=$

More notation:

$$
\begin{aligned}
& f_{x} \text { means } \frac{\partial}{\partial x} f \\
& f_{y} \text { means } \frac{\partial}{\partial y} f
\end{aligned}
$$

Higher order derivatives:

$$
\begin{array}{lr}
\frac{\partial}{\partial x} \frac{\partial}{\partial y} f= & \frac{\partial}{\partial x} \frac{\partial}{\partial y} f= \\
\frac{\partial}{\partial y} \frac{\partial}{\partial x} f= & \frac{\partial}{\partial y} \frac{\partial}{\partial y} f=
\end{array}
$$

Notice:

$$
f_{x y}=f_{y x}
$$

This is true in general. It's called Clairaut's theorem.

$$
\begin{aligned}
& \text { If } y=f(g) \\
& \qquad \frac{d y}{d t}=\frac{d f}{d g} \frac{d g}{d t}
\end{aligned}
$$

$$
\text { If } y=\beta(x, v)
$$

$$
\frac{d y}{d x}=\frac{\partial \beta}{\partial x}+\frac{\partial \beta}{\partial v} \frac{\partial v}{\partial x}
$$

$$
\text { If } y=g(w, z)
$$

$$
\frac{d y}{d x}=g_{w} w_{x}+g_{z} z_{x}
$$

If $y=g(x, y, z)$

$$
\frac{d y}{d t}=g_{x} x_{t}+g_{y} y_{t}+g_{z} z_{t}
$$

Example:

$$
\frac{d}{d x} x \sin (x)^{2}=
$$

Example:

$$
f(x, y)=x^{y}, \quad y=y(x)
$$

What is f_{x} ?

Example: Solve

$$
\frac{d y}{d x}=(x+y+3)^{2}
$$

Using the substitution $v=x+y+3$.

This works whenever you have a differential equation of the form $\frac{d y}{d x}=F(a x+b y+c)$.

For homogeneous equations like $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$,
the substitution

$$
v=\frac{y}{x}
$$

is useful.

Example: Solve for y :

$$
2 x y \frac{d y}{d x}=4 x^{2}+3 y^{2}
$$

Bernoulli equation

For the Bernoulli equation:

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

You should take $v=y^{1-n}$ which turns it into

$$
\frac{d v}{d x}+(1-n) P(x) v=(1-n) Q(x)
$$

Example:

$$
2 x y y^{\prime}=4 x^{2}+3 y^{2}
$$

Example:

$$
2 x+y^{2}+2 x y y^{\prime}=0
$$

Definition: A DE $M+N \frac{d y}{d x}=0$ is exact if we can find $f(x, y)$ such that $f_{x}=M$ and $f_{y}=N$.

Is the following DE exact or not?

Is the following DE exact or not?

Test for exactness: A DE $M+N \frac{d y}{d x}=0$ can only be exact if $M_{y}=N_{x}$.

$$
2 x+y^{2}+2 x y y^{\prime}=0
$$

Definition: A DE $M+N \frac{d y}{d x}=0$ is exact if we can find $f(x, y)$ such that $f_{x}=M$ and $f_{y}=N$.

Is the following DE exact or not?

Is the following DE exact or not?

Test for exactness: A DE $M+N \frac{d y}{d x}=0$ can only be exact if $M_{y}=N_{x}$.

If we know an equation is exact, it is easy to figure out what f is.

$$
\left(6 x y-y^{3}\right) d x+\left(4 y+3 x^{2}-3 x y^{2}\right) d y=0
$$

Definition: A DE $M+N \frac{d y}{d x}=0$ is exact if we can find $f(x, y)$ such that $f_{x}=M$ and $f_{y}=N$.

FIGURE 1.6.7. Slope field and solution curves for the exact equation in Example 9.

- Differential equations can often be transformed into different forms
- Useful to reduce one problem to another problem
- Useful when using a computer to solve the differential equation
- Exact equations are a nice application of Clairaut's theorem.

