# MAT303: Calc IV with applications

Lecture 4 - February 15 2021

Last time:

• Ch 1.4 Separable equations

$$\frac{dy}{dx} = f(x)g(y)$$

- Solving problems using separable equations. (Applications)
  - Radioactive decay
  - Water escaping from a tank

Today:

• Ch 1.5 Integrating Factors for first order linear Des





Types of DEs (these are not exclusive):

• First order: 
$$\frac{dy}{dt} = f(x, y)$$

• First order Separable: 
$$\frac{dy}{dt} = f(x)g(y)$$

• First order linear: 
$$\frac{dy}{dx} + p(x)y = q(x)$$

Classify:

$$y' = xy$$

$$y' = y^2$$

$$y'' + 2y$$

$$(4+t^2)\frac{dy}{dt} + 2ty = 4t$$

#### What is a first order linear DE?

$$\frac{dy}{dt} + 2y = 4t$$

x + x

$$\frac{dy}{dt} = 4t - 2y$$

y'' + 2y' + 3y = 0



Last time:

• Ch 1.4 Separable equations

$$\frac{dy}{dx} = f(x)g(y)$$

- Solving problems using separable equations. (Applications)
  - Radioactive decay
  - Water escaping from a tank

Today:

• Ch 1.5 Integrating Factors

Separation of variables does not work:

$$(4+t^2)\frac{dy}{dt} + 2ty = 4t$$



Product rule:

$$\frac{d}{dt}(fg) = f'g + fg'$$

E.g:

$$\frac{d}{dt}(t\sin t) =$$

$$\frac{d}{dt}(t^2y) =$$

## 1st ingredient: Product rule



If 
$$\frac{dy}{dt} = t^2$$
, what is *y*?

If 
$$\frac{d}{dt}(yt) = t^3$$
, what is y?

If 
$$\frac{d}{dt}((4+t^2)y) = t$$
, what is y?

## 2nd ingredient: integration





Example: Solve  $(4 + t^2)\frac{dy}{dt} + 2ty = 4t$ 

Key idea: writing LHS as 
$$\frac{d}{dt}(\ldots)$$

From previous slides:

$$\frac{d}{dt}((4+t^2)y) = (4+t^2)\frac{dy}{dt} + 2ty$$
  
If  $\frac{d}{dt}((4+t^2)y) = 4t$ , then  $y = \frac{2t^2}{(4+t^2)}$ 





Example 1: Find the solution to the DE  $\frac{dy}{dt} - 2y = e^{5t}$ 

Want to use previous trick: LHS =  $\frac{d}{dt}(...)$ ?

How did we know to multiply by  $\mu = e^{-2t}$ ?

Answer:  $\mu = e^{\int pdt}$  always works.





$$y' + py = q$$

How did we know to multiply by  $\mu = e^{-2t}$ ?

Answer:  $\mu = e^{\int p dt}$  always works.

Solving linear DEs this way is called the method of integrating factors.



Example: Solve 
$$t \frac{dy}{dt} + 2y = 4t^2$$

## Integrating factors



$$y' + py = q$$

#### How to discover the method



Solving linear differential DEs with integrating factors:

1. Write DE in 'standard form'

- 2. Multiply by integrating factor  $\mu = e^{\int pdt}$
- 3. Rewrite LHS:
- 4. Integrate and solve for y

#### Summary of integrating factors

Deriving the method:

1. Wishful thinking:

2. Solve to find the correct expression for  $\mu$ 



| Example 4 | Assume that Lake Erie has a volume of 480 km <sup>3</sup> and that its rate of inflow (from Lake Huron) |
|-----------|---------------------------------------------------------------------------------------------------------|
|           | and outflow (to Lake Ontario) are both 350 km <sup>3</sup> per year. Suppose that at the time $t = 0$   |
|           | (years), the pollutant concentration of Lake Erie—caused by past industrial pollution that              |
|           | has now been ordered to cease—is five times that of Lake Huron. If the outflow henceforth               |
|           | is perfectly mixed lake water, how long will it take to reduce the pollution concentration in           |
|           | Lake Erie to twice that of Lake Huron?                                                                  |

## **Applications: Water mixtures**

| ) |  |
|---|--|
| ) |  |
| t |  |
| 1 |  |
| 1 |  |





| Example 5 | A 120-gallon (gal) tank initially contains 90 lb of salt dissolved in 90 gal of water. Brin   |
|-----------|-----------------------------------------------------------------------------------------------|
|           | containing 2 lb/gal of salt flows into the tank at the rate of 4 gal/min, and the well-stirre |
|           | mixture flows out of the tank at the rate of 3 gal/min. How much salt does the tank contain   |
|           | when it is full?                                                                              |
|           |                                                                                               |

## **Applications: Water mixtures**

rine rred tain

