MAT303: Calc IV with applications

Lecture 2 - February 082021

Last time:

- Different ways of interpreting functions and DEs
- Slope field

Today:

- Separable equations
- Solving problems using separable equations. (Applications)

What is the point of solving differential equations:

- Answer questions like
- What is $y(4)$?
- What is $\mathrm{y}(\mathrm{t})$?
- Get an idea of what the behavior of the model
- See what happens when initial condition changes
- See what happens in the long run
- See what happens when model changes

First order equation where RHS does not depend on y :

$$
\frac{d y}{d x}=-6 x
$$

First order equation where RHS does depend on y :

$$
\frac{d y}{d x}=-6 x y
$$

New technique: separation of variables
(From lecture 2), HW)

$$
\begin{aligned}
& \frac{d P}{d t}=k P-l P^{2} \\
& k=0.0225, \quad l=0.0003 \\
& P(0)=25
\end{aligned}
$$

Example 3: from textbook
Solve for y :

$$
y^{\prime}=6 x(y-1)^{2 / 3}
$$

$$
x^{2}+y^{2}=C
$$

$$
y^{\prime}=\frac{4-2 x}{3 y^{2}-5}
$$

When does separation of variables work?
a) $\frac{d y}{d x}=y e^{x}$
b) $\frac{d y}{d x}=\cos (y) \sin (x)$
c) $y^{\prime}=\cos \left(e^{x}+y\right)$
d) $y^{\prime}=y$
e) $y^{\prime}=\frac{4-2 x}{3 y^{2}-5}$

Example applications:

Radioactive decay:

Let $N(t)$ be the number of atoms of a certain radioactive isotype at time t.
Then:
$\frac{d N}{d t}=-k N$

This is used for radiocarbon dating:

- radioactive carbon stays constant for living organism
- When organism dies, this decays according to the differential equation above
- So we if we measure the radioactive carbon content of an object, we can figure out how long ago it died.
- Charcoal at Stonehenge contains 63% as much radioactive carbon compared to present-day charcoal of the same mass.
- How old is the sample?
- Assume that radioactive carbon decays according to the differential equation

$$
\frac{d N}{d t}=-k N, \quad k=0.0001216
$$

Solution:

- Suppose you have water in a tank, of depth y
- Tank has a hole at the bottom.
- Then the velocity of the water flow at the bottom is

$$
v=\sqrt{2 g y}
$$

Question: Suppose you have a hemispherical bowl has radius 4 ft
and it is full of water. Suppose you open up a hole of diameter 1 in at time $t=0$.

1. Write down a differential equation for the water depth y.
2. What is the depth of water at time t?
3. How long does it take the tank to empty?

Key idea: we need to find a differential equation for the volume V .
Rate of change in volume = cross sectional area * velocity

See textbook and hw for other applications such as

- Drug elimination
- Population Growth
- Newton's law of cooling
- Compound interest
- Water flow in a tank
- Logistic population growth
- Radioactive decay

