
Lecture 25 - May 5 2021

MAT303: Calc IV with applications
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Plan

Recently: Solutions homogeneous constant coefficient systems:  

And: Solutions to nonhomogeneous systems

x′ = Ax + f(t)

Today: geometric interpretation of eigenvectors (Ch 5.3)

We will deal only with  case.n = 2
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Review: interpretation of solution as parametric equation

We’ve been solving systems such as 

Or equivalently 

x′ = P(t)x + f(t)

The solution is a collection of functions  
or equivalently a vector function 

x1(t), …, xn(t),
x(t)

Recall from your earlier education that such objects 
can be viewed as parametric curves in .ℝn

E.g.  traces out a circle in x(t) = (cos t, sin t) ℝ2 .

So a solution to a system of DEs can be viewed as a 
parametric curve. See lecture 17 for more on this.

We covered how to solve these systems using the 
eigenvector method.


Today we’ll see how the eigenvectors give us 
information about the solution.
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Review: interpretation of solution as parametric equation

We’ve been solving systems such as 

Or equivalently 

x′ = P(t)x + f(t)

The solution is a collection of functions  
or equivalently a vector function 

x1(t), …, xn(t),
x(t)

Recall from your earlier education that such objects 
can be viewed as parametric curves in .ℝn

E.g.  traces out a circle in x(t) = (cos t, sin t) ℝ2 .

So a solution to a system of DEs can be viewed as a 
parametric curve. See lecture 17 for more on this.

We covered how to solve these systems using the 
eigenvector method.


Today we’ll see how the eigenvectors give us 
information about the solution.



Example : positive eigenvalues of different signs
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Example 1: Consider  where x′ = Ax

The eigenvalues of  are A λ1 = − 2, λ2 = 5.

The eigenvectors are

General solution:

Geometrically:

The origin is called a saddle point  for the system.Note that x(0) = (c1, c2) .



Example : Distinct eigenvalues of the same sign
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Example 2: Consider  where x′ = Ax

The eigenvalues of  are A λ1 = − 14, λ2 = − 7

The eigenvectors are

General solution:

Geometrically:

• The origin is called a sink because all trajectories go towards the origin.

• If all the trajectories were repelled from the origin, it would be a source.

• A sink or source for which every trajectory approaches  

the origin tangential to a straight line is called a node.


So in this situation we have a nodal sink.



Example : Distinct eigenvalues of the same sign
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Example 3: Consider  where x′ = Ax

The eigenvalues of  are A λ1 = 14, λ2 = 7

The eigenvectors are

General solution:

Geometrically:

• The origin is called a source because all trajectories go towards the origin.

• If all the trajectories were attracted to the origin, it would be a sink.

• A sink or source for which every trajectory approaches  

the origin tangential to a straight line is called a node.


So in this situation we have a nodal source.

This system is just the time reversal of the previous system. 
Notice the eigenvalues are the same, but eigenvalues have opposite signs.



Example : One zero and one negative eigenvalue
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Example 3: Consider  where x′ = Ax

The eigenvalues of  are A λ1 = 14, λ2 = 7

The eigenvectors are

General solution:

Geometrically:

• If we take the time reversal, trajectories reverse direction. Solutions are  
repelled from the line.

This system is just the time reversal of the previous system. 
Notice the eigenvalues are the same, but eigenvalues have opposite signs.



Example: repeated eigenvalues, two linearly independent eigenvectors
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Example 3: Consider  where x′ = Ax

The eigenvalue of  are  (repeated)A λ = 2

A choice of linearly independent eigenvectors is 

General solution:

Geometrically:

• The origin is called a source because all trajectories go towards the origin.

• If all the trajectories were attracted to the origin, it would be a sink.

• A sink or source for which every trajectory approaches  

the origin tangential to a straight line is called a node.


So in this situation we have a nodal source.
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Example: repeated eigenvalues, only one independent eigenvector
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Example 3: Consider  where x′ = Ax

The eigenvalue of  are  (repeated)A λ = 2

There is only one eigenvector,  
however we have also have a generalized eigenvector:

General solution:

Geometrically:



Matrix multiplication as a transformation of ℝ2
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In one dimension, multiplying by   
can be thought of as stretching or reflection the real line:

λ ∈ ℝ In two dimensions, multiplying by a matrix   
can be thought of as stretching or rotation or shearing of the plane:

A

E.g. 

A = [0 −1
1 0 ]

A = [2 0
0 1]

corresponds to rotation by π/2

corresponds to stretching in the x-direction

So if   parameterizes some curve,  

then  parameterizes a stretching/rotation/shearing of that curve.

x(t) = [x(t)
y(t)]

Ax(t)



Example: Purely imaginary eigenvalues
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Example 3: Consider  where x′ = Ax

The eigenvalues of  are  A λ = ± 10i

The eigenvectors are

General solution:

Geometrically:

[3 + 5i
4 ] and [3 − 5i

4 ]

Need the following fact from linear algebra:  
matrix multiplication can be geometrically interpreted as a rotation+stretch+shear.



Example: Complex eigenvalues with nonzero real part
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Example 3: Consider  where x′ = Ax

The eigenvalues of  are  A λ = − 1 ± 10i

The eigenvectors are

General solution:

Geometrically:

• In this situation we have a sink.  
It’s not nodal because the trajectories don’t approach  
tangentially along a straight line.

[3 + 5i
4 ] and [3 − 5i

4 ]

Need the following fact from linear algebra:  
matrix multiplication can be geometrically interpreted as a rotation+stretch+shear.


