MAT303: Calc IV with applications

Lecture 24 - May 3 2021

Recently: Solutions homogeneous constant coefficient systems:

THEOREM 1 Fundamental Matrix Solutions

Let $\Phi(t)$ be a fundamental matrix for the homogeneous linear system $\mathbf{x}' = \mathbf{A}\mathbf{x}$. Then the [unique] solution of the initial value problem

$$\mathbf{x}' = \mathbf{A}\mathbf{x}, \quad \mathbf{x}(0) = \mathbf{x}_0 \tag{7}$$

is given by

$$\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{\Phi}(0)^{-1}\mathbf{x}_0.$$
(8)

THEOREM 2 Matrix Exponential Solutions

If **A** is an $n \times n$ matrix, then the solution of the initial value problem

$$\mathbf{x}' = \mathbf{A}\mathbf{x}, \qquad \mathbf{x}(0) = \mathbf{x}_0 \tag{26}$$

is given by

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0,\tag{27}$$

and this solution is unique.

Today: Solutions to nonhomogeneous systems

 $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{f}(t)$

2

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{f}(t)$$

Principle of superposition:

THEOREM 4 Solutions of Nonhomogeneous Systems

Let \mathbf{x}_p be a particular solution of the nonhomogeneous linear equation in (47) on an open interval I on which the functions P(t) and f(t) are continuous. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ be linearly independent solutions of the associated homogeneous equation on I. If $\mathbf{x}(t)$ is any solution whatsoever of Eq. (47) on I, then there exist numbers c_1, c_2, \ldots, c_n such that

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) + \dots + c_n \mathbf{x}_n(t) + \mathbf{x}_p(t)$$
(49)

for all t in I.

This means we just have to find one particular solution \mathbf{x}_p .

Then the general solution is $\mathbf{x} = \mathbf{x}_c + \mathbf{x}_p$

where \mathbf{x}_c is the general homogeneous solution.

Two methods to find a particular solution:

- Method of undetermined coefficients
- Variation of parameters

Example: method of undetermined coefficients
Example 1Find a particular solution of the nonhomogeneous system $\mathbf{x}' = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 3 \\ 2t \end{bmatrix}.$

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{f}(t)$$

Principle of superposition:

THEOREM 4 Solutions of Nonhomogeneous Systems

Let \mathbf{x}_p be a particular solution of the nonhomogeneous linear equation in (47) on an open interval I on which the functions P(t) and f(t) are continuous. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ be linearly independent solutions of the associated homogeneous equation on I. If $\mathbf{x}(t)$ is any solution whatsoever of Eq. (47) on I, then there exist numbers c_1, c_2, \ldots, c_n such that

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) + \dots + c_n \mathbf{x}_n(t) + \mathbf{x}_p(t)$$
(49)

for all t in I.

This means we just have to find one particular solution \mathbf{x}_p .

Then the general solution is $\mathbf{x} = \mathbf{x}_c + \mathbf{x}_p$

where \mathbf{x}_c is the general homogeneous solution.

Two methods to find a particular solution:

- Method of undetermined coefficients
- Variation of parameters

Undetermined coefficients

Example: method of undetermined coefficients
Example 1 Find a particular solution of the nonhomogeneous system $\mathbf{x}' = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 3 \\ 2t \end{bmatrix}.$

To solve

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{f}(t)$$

We assume that we have already found the fundamental matrix to the homogeneous equation, $\Phi(t)$

Therefore the general homogeneous solution is $\mathbf{x}_c = \mathbf{\Phi}(t)\mathbf{c}$

Then we guess $\mathbf{x}_p = \Phi(t)\mathbf{u}(t)$, and see what constraints on $\mathbf{u}(t)$ come up.

THEOREM 1 Variation of Parameters

If $\Phi(t)$ is a fundamental matrix for the homogeneous system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ on some interval where $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous, then a particular solution of the nonhomogeneous system

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{f}(t)$$

is given by

>
$$\mathbf{x}_p(t) = \mathbf{\Phi}(t) \int \mathbf{\Phi}(t)^{-1} \mathbf{f}(t) dt.$$
 (22)

5

THEOREM 1 Variation of Parameters

If $\Phi(t)$ is a fundamental matrix for the homogeneous system $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ on some interval where $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous, then a particular solution of the nonhomogeneous system

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{f}(t)$$

is given by

$$\mathbf{x}_p(t) = \mathbf{\Phi}(t) \int \mathbf{\Phi}(t)^{-1} \mathbf{f}(t) dt.$$
 (22)

Solve the initial value problem Example 4

$$\mathbf{x}' = \begin{bmatrix} 4 & 2\\ 3 & -1 \end{bmatrix} \mathbf{x} - \begin{bmatrix} 15\\ 4 \end{bmatrix} t e^{-2t}, \quad \mathbf{x}(0) = \begin{bmatrix} 7\\ 3 \end{bmatrix}.$$
(30)

Note: in previous lectures we found the two solutions to the homogeneous equation,

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ -3 \end{pmatrix} e^{-2t} \text{ and } \mathbf{x}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{5t}.$$

6