MAT303: Calc IV with applications

Lecture 24 - May 32021

Recently: Solutions homogeneous constant coefficient systems:

THEOREM 1 Fundamental Matrix Solutions

Let $\boldsymbol{\Phi}(t)$ be a fundamental matrix for the homogeneous linear system $\mathbf{x}^{\prime}=\mathbf{A x}$ Then the [unique] solution of the initial value problem

$$
\begin{equation*}
>\quad \mathbf{x}^{\prime}=\mathbf{A x}, \quad \mathbf{x}(0)=\mathbf{x}_{0} \tag{7}
\end{equation*}
$$

is given by
>

$$
\begin{equation*}
\mathbf{x}(t)=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}(0)^{-1} \mathbf{x}_{0} . \tag{8}
\end{equation*}
$$

THEOREM 2 Matrix Exponential Solutions

If \mathbf{A} is an $n \times n$ matrix, then the solution of the initial value problem
$>$

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

is given by
$>$

$$
\begin{equation*}
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}, \tag{27}
\end{equation*}
$$

and this solution is unique.

Today: Solutions to nonhomogeneous systems

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{f}(t)
$$

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)
$$

Example: method of undetermined coefficients

Example 1 Find a particular solution of the nonhomogeneous system

Principle of superposition:

THEOREM 4 Solutions of Nonhomogeneous Systems

Let \mathbf{x}_{p} be a particular solution of the nonhomogeneous linear equation in (47) on an open interval I on which the functions $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous. Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ be linearly independent solutions of the associated homogeneous equation on I. If $\mathbf{x}(t)$ is any solution whatsoever of Eq. (47) on I, then there exist numbers $c_{1}, c_{2}, \ldots, c_{n}$ such that
$>\quad \mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)+\mathbf{x}_{p}(t)$
for all t in I.

This means we just have to find one particular solution \mathbf{x}_{p}.
Then the general solution is $\mathbf{x}=\mathbf{x}_{c}+\mathbf{x}_{p}$ where \mathbf{x}_{c} is the general homogeneous solution.

Two methods to find a particular solution:

- Method of undetermined coefficients
- Variation of parameters

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
3 & 2 \tag{3}\\
7 & 5
\end{array}\right] \mathbf{x}+\left[\begin{array}{r}
3 \\
2 t
\end{array}\right]
$$

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)
$$

Principle of superposition:

THEOREM 4 Solutions of Nonhomogeneous Systems

Let \mathbf{x}_{p} be a particular solution of the nonhomogeneous linear equation in (47) on an open interval I on which the functions $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous. Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ be linearly independent solutions of the associated homogeneous equation on I. If $\mathbf{x}(t)$ is any solution whatsoever of Eq. (47) on I, then there exist numbers $c_{1}, c_{2}, \ldots, c_{n}$ such that
$>\quad \mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)+\mathbf{x}_{p}(t)$
for all t in I.

This means we just have to find one particular solution \mathbf{x}_{p}.
Then the general solution is $\mathbf{x}=\mathbf{x}_{c}+\mathbf{x}_{p}$ where \mathbf{x}_{c} is the general homogeneous solution.

Two methods to find a particular solution:

- Method of undetermined coefficients
- Variation of parameters

Example: method of undetermined coefficients

Example 1 Find a particular solution of the nonhomogeneous system

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
3 & 2 \\
7 & 5
\end{array}\right] \mathbf{x}+\left[\begin{array}{r}
3 \\
2 t
\end{array}\right]
$$

To solve

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)
$$

We assume that we have already found
the fundamental matrix to the homogeneous equation, $\boldsymbol{\Phi}(t)$

Therefore the general homogeneous solution is $\mathbf{x}_{c}=\boldsymbol{\Phi}(t) \mathbf{c}$

Then we guess $\mathbf{x}_{p}=\Phi(t) \mathbf{u}(t)$, and see what constraints on $\mathbf{u}(t)$ come up.

THEOREM 1 Variation of Parameters
If $\boldsymbol{\Phi}(t)$ is a fundamental matrix for the homogeneous system $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on some interval where $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous, then a particular solution of the nonhomogeneous system

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)
$$

is given by
$>$

$$
\mathbf{x}_{p}(t)=\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}(t)^{-1} \mathbf{f}(t) d t
$$

THEOREM 1 Variation of Parameters

If $\boldsymbol{\Phi}(t)$ is a fundamental matrix for the homogeneous system $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on some interval where $\mathbf{P}(t)$ and $\mathbf{f}(t)$ are continuous, then a particular solution of the nonhomogeneous system

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)
$$

is given by
$>\quad \mathbf{x}_{p}(t)=\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}(t)^{-1} \mathbf{f}(t) d t$.
(22)

Example 4 Solve the initial value problem

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
4 & 2 \\
3 & -1
\end{array}\right] \mathbf{x}-\left[\begin{array}{r}
15 \\
4
\end{array}\right] t e^{-2 t}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
7 \\
3
\end{array}\right] .
$$

Note: in previous lectures we found the two solutions to the homogeneous equation,

$$
\mathbf{x}_{1}=\binom{1}{-3} e^{-2 t} \text { and } \mathbf{x}_{2}=\binom{2}{1} e^{5 t}
$$

