MAT303: Calc IV with applications

Lecture 23 - April 282021

Last time: Matrix exponentials

- Review matrix inverses
- Fundamental matrix solutions
- Solve for all initial conditions 'simultaneously'.
- Matrix Exponentials as matrix solutions
- Especially easy to compute when the matrix is nilpotent.

Today:

- More examples of matrix exponentials.
- How to compute them if the matrix is not nilpotent?

Using matrix exponential to solve DEs

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
2. Find $e^{\mathbf{A} t}$
3. Solution is $\mathbf{x}=e^{\mathbf{A} t} \mathbf{x}_{0}$ where \mathbf{x}_{0} is the initial condition.

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} \frac{t^{2}}{2!}+\cdots+\mathbf{A}^{n} \frac{t^{n}}{n!}+\cdots
$$

We've just seen that computing $e^{\mathbf{A} t}$ is useful for solving systems of DEs.
Here are some facts that help us compute $e^{\mathbf{A} t}$.

Definition of matrix exponential:

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} \frac{t^{2}}{2!}+\cdots+\mathbf{A}^{n} \frac{t^{n}}{n!}+\cdots
$$

Nilpotent \mathbf{A} : Just use the definition, it will be a finite sum because \mathbf{A}^{n} eventually.

Diagonal A:

Commutativity: If $\mathbf{A B}=\mathbf{B} \mathbf{A}$, then $e^{\mathbf{A}+\mathbf{B}}=e^{\mathbf{A}} e^{\mathbf{B}}$.

Exponential of zero matrix: $e^{0}=\mathbf{I}$.

Inverse of exponential: $\left(e^{\mathbf{A}}\right)^{-1}=e^{-\mathbf{A}}$

Diagonal matrix always commute with all other matrices:

Computing $e^{\mathbf{A} t}$ when matrix is a sum of a diagonal and nilpotent matrix.
Suppose

$$
\mathbf{A}=\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 2 & 6 \\
0 & 0 & 2
\end{array}\right]
$$

Fact: whenever a matrix \mathbf{A} only has one eigenvalue λ, we can always write $\mathbf{A}=\lambda \mathbf{I}+(\mathbf{A}-\lambda \mathbf{I})$
and the first term is always diagonal and the second term is always nilpotent.

Thus, when a matrix only has one eigenvalue, we can easily compute $e^{\mathbf{A} t}$ as in this example.
THEOREM 2 Matrix Exponential Solutions
If \mathbf{A} is an $n \times n$ matrix, then the solution of the initial value problem

$>$	$\mathbf{x}^{\prime}=\mathbf{A x}, \quad \mathbf{x}(0)=\mathbf{x}_{0}$
is given by	
$>$	$\mathbf{x}(t)=e^{\mathbf{A t} \mathbf{x}_{0},}$

and this solution is unique.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{lll}
2 & 3 & 4 \\
0 & 2 & 6 \\
0 & 0 & 2
\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{c}
19 \\
29 \\
39
\end{array}\right]
$$

inast lecture: Tharacterestic polynomial is $\operatorname{det}(A-\lambda I)=(\lambda-4)^{2}$ Only 1 eigenvalue of A is $\lambda=4$. Only eigenvector is $v=\binom{1}{-1}$.	sad mat $\left.\left(v_{1}^{0}=\left(\frac{1}{3}\right), v_{2}=\left(7_{4}^{7}\right), v_{2} \neq k_{0}^{6}\right)\right) .$ $v_{1}=\left(a-\lambda x_{1} v_{2}=\binom{-2}{3}^{-3}\right)\binom{0}{3}=\binom{-3}{3}$ (1) The 2 lunearty dependent sols $\vec{x}_{c}(t)=\left(-\frac{3}{3}\right) e^{4 t}, \quad \vec{x}_{2}(t)=\left(v_{1} t+r_{2}\right) e^{4 t}$
So eigenvalue is defective with multiplicity 2. - find general solution,	* Unlike in (1), you will oot always get O condraucts. But yau will yet undeterdetermined system.

Solving DEs to find matrix exponentials

We have, from last lecture:

Therefore:

THEOREM 1 Fundamental Matrix Solutions

Let $\boldsymbol{\Phi}(t)$ be a fundamental matrix for the homogeneous linear system $\mathbf{x}^{\prime}=\mathbf{A x}$. Then the [unique] solution of the initial value problem
$\mathbf{x}^{\prime}=\mathbf{A x}, \quad \mathbf{x}(0)=\mathbf{x}_{0}$
is given by
$>$

$$
\begin{equation*}
\mathbf{x}(t)=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}(0)^{-1} \mathbf{x}_{0} . \tag{8}
\end{equation*}
$$

THEOREM 2 Matrix Exponential Solutions

If \mathbf{A} is an $n \times n$ matrix, then the solution of the initial value problem
$>$

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

(26)
is given by
$>$

$$
\begin{equation*}
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}, \tag{27}
\end{equation*}
$$

and this solution is unique.

Today:

- More examples of matrix exponentials.
- How to compute them if the matrix is not nilpotent?
- We see that it is easy as long as A=diagonal + nilpotent
- Actually whenever A only has one eigenvalue, we can write it as diagonal + nilpotent
- We see that we can use DE solutions to find matrix exponentials.

Eigenvalue method

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
2. Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
3. Find the eigenvalues
4. Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
5. The roots of this polynomial are the eigenvalues λ
6. Find the eigenvectors corresponding to each λ
7. Write down the solutions, solve for initial conditions if applicable.

Using matrix exponential to solve DEs

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
2. Find $e^{\mathbf{A} t}$
3. Solution is $\mathbf{x}=e^{\mathbf{A} t} \mathbf{x}_{0}$
