MAT303: Calc IV with applications

Lecture 22 - April 262021

Recently:

- Eigenvalue method for $\mathbf{x}^{\prime}=\mathbf{A x}$
- Still need to finish off case of defective eigenvalues (missing solutions).

Today:

- Review matrix inverses
- Fundamental matrix solutions
- Solve for all initial conditions 'simultaneously'.
- Matrix Exponentials as fundamental matrix solutions

Eigenvalue method

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A x}$
2. Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
3. Find the eigenvalues
4. Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
5. The roots of this polynomial are the eigenvalues λ
6. Find the eigenvectors corresponding to each λ
7. Some complications if the eigenvalue is defective (not enough eigenvectors)
8. Write down the solutions, solve for initial conditions if applicable.

Let's start with the multiplicity $k=2$ case, it's the simplest.

Situation:

- We are trying to solve $\mathbf{x}^{\prime}=\mathbf{A x}$
- The matrix \mathbf{A} has an eigenvalue λ of multiplicity 2 (repeated root)
- The eigenvalue λ is defective (only 1 linearly independent eigenvector \mathbf{v}_{1} instead of 2).
- So we only have one solution, $\mathbf{x}_{1}=\mathbf{v}_{1} e^{\lambda t}$.
- Need to find another.

Solution: guess $\mathbf{x}_{2}=\mathbf{v}_{1} t e^{\lambda t}+\mathbf{v}_{2} e^{\lambda t} \quad$ where \mathbf{v}_{2} is unknown.

We find that the constraint on \mathbf{v}_{2} is $(\mathbf{A}-\lambda I)^{2} \mathbf{v}_{2}=0$

Note: once we find \mathbf{v}_{2} then $\mathbf{v}_{1}=(\mathbf{A}-\lambda I) \mathbf{v}_{2}$.

ALGORITHM Defective Multiplicity 2 Eigenvalues

1. First find a nonzero solution \mathbf{v}_{2} of the equation

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I})^{2} \mathbf{v}_{2}=\mathbf{0} \tag{16}
\end{equation*}
$$

such that

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{2}=\mathbf{v}_{1} \tag{17}
\end{equation*}
$$

is nonzero, and therefore is an eigenvector \mathbf{v}_{1} associated with λ.
2. Then form the two independent solutions

$$
\mathbf{x}_{1}(t)=\mathbf{v}_{1} e^{\lambda t}
$$

and

$$
\begin{equation*}
\mathbf{x}_{2}(t)=\left(\mathbf{v}_{1} t+\mathbf{v}_{2}\right) e^{\lambda t} \tag{19}
\end{equation*}
$$

of $\mathbf{x}^{\prime}=\mathbf{A x}$ corresponding to λ.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
1 & -3 \\
3 & 7
\end{array}\right] \mathbf{x} .
$$

Ch 5.6 Exponential Matrices and Fundamental Matrix Solutions

Suppose we want to find the solution of the following initial value problem

$$
\begin{aligned}
& x^{\prime}=4 x+2 y \\
& y^{\prime}=3 x-y
\end{aligned}
$$

$x(0)=1, \quad y(0)=1$.

We know how to find the general solution now:

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
2. Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
3. Find the eigenvalues
4. Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
5. The roots of this polynomial are the eigenvalues λ
6. Find the eigenvectors corresponding to each λ
7. Write down the solutions, solve for initial conditions.

Suppose we want to find the solution of the following initial value problem

$$
\begin{aligned}
& x^{\prime}=4 x+2 y \\
& y^{\prime}=3 x-y
\end{aligned}
$$

$$
x(0)=3, \quad y(0)=2
$$

We know how to find the general solution now:

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A x}$
2. Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
3. Find the eigenvalues
4. Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
5. The roots of this polynomial are the eigenvalues λ
6. Find the eigenvectors corresponding to each λ
7. Write down the solutions, solve for initial conditions.

Suppose we want to find the solution of the following initial value problem

$$
\begin{aligned}
& x^{\prime}=4 x+2 y \\
& y^{\prime}=3 x-y
\end{aligned}
$$

$x(0)=u_{1}, \quad y(0)=u_{2}$.

We know how to find the general solution now:

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A x}$
2. Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
3. Find the eigenvalues
4. Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
5. The roots of this polynomial are the eigenvalues λ
6. Find the eigenvectors corresponding to each λ
7. Write down the solutions, solve for initial conditions.

Insight: Just use the matrix inverse instead of solving for the coefficients.

Definition: Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ be linearly independent solutions the system $\mathbf{x}^{\prime}=\mathbf{A x}$.
Let $\boldsymbol{\Phi}$ be the matrix formed by taking \mathbf{x}_{i} as the columns.
Then $\boldsymbol{\Phi}$ is said to be a fundamental matrix for the system.

THEOREM 1 Fundamental Matrix Solutions

Let $\boldsymbol{\Phi}(t)$ be a fundamental matrix for the homogeneous linear system $\mathbf{x}^{\prime}=\mathbf{A x}$. Then the [unique] solution of the initial value problem

$$
>\quad \mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

is given by
$>$

$$
\begin{equation*}
\mathbf{x}(t)=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}(0)^{-1} \mathbf{x}_{0} . \tag{8}
\end{equation*}
$$

The previous example, summarized with this new vocabulary:

$$
\begin{aligned}
& x^{\prime}=4 x+2 y, \\
& y^{\prime}=3 x-y,
\end{aligned}
$$

Takeaway: We can solve the system for all initial conditions, all at once. Just compute $\Phi(t) \Phi(0)^{-1}$.

Fundamental Solutions as Matrix Exponentials

It turns out that there's another, conceptually cleaner way to view fundamental solutions.
Also, this can sometimes lead to a much quicker computation.
It is inspired by the following fact:

The solution to $x^{\prime}=a x$ is $x(t)=e^{a t} x(0)$.

THEOREM 2 Matrix Exponential Solutions

If \mathbf{A} is an $n \times n$ matrix, then the solution of the initial value problem
$>$

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}_{0} \tag{26}
\end{equation*}
$$

is given by
$>$

$$
\begin{equation*}
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}, \tag{27}
\end{equation*}
$$

and this solution is unique.

This doesn't make sense yet, because what does $e^{\mathbf{A t} t}$ mean???

Recall: $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$

Similarly, we define

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} \frac{t^{2}}{2!}+\cdots+\mathbf{A}^{n} \frac{t^{n}}{n!}+\cdots
$$

Looks complicated because it's an infinite sum, but there are some tricks that can help

Example:

$$
\mathbf{A}=\left[\begin{array}{lll}
0 & 3 & 4 \\
0 & 0 & 6 \\
0 & 0 & 0
\end{array}\right]
$$

If $A^{n}=0$ for some n, the matrix is said to be nilpotent. We just saw that it is easy to compute $e^{A t}$ when A is nilpotent.

Recently:

- Eigenvalue method for $\mathbf{x}^{\prime}=\mathbf{A x}$

Today:

- Review matrix inverses
- Fundamental matrix solutions
- Solve for all initial conditions 'simultaneously'.
- Matrix Exponentials as matrix solutions
- Especially easy to compute when the matrix is nilpotent.

Today:

- More examples of matrix exponentials.
- How to compute them if the matrix is not nilpotent?

Eigenvalue method

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
2. Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
3. Find the eigenvalues
4. Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
5. The roots of this polynomial are the eigenvalues λ
6. Find the eigenvectors corresponding to each λ
7. Write down the solutions, solve for initial conditions if applicable.

Using matrix exponential to solve DEs

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
2. Find $e^{\mathbf{A} t}$
3. Solution is $\mathbf{x}=e^{\mathbf{A} t} \mathbf{x}_{0}$
