MAT303: Calc IV with applications

Lecture 21 - April 212021

Last time:

- Linear independence of solutions (Finish Ch 5.1)
- Eigenvalue method (Ch 5.2)
- Distinct real eigenvalues

Today:

- Eigenvalue method
- Distinct complex eigenvalues (Ch 5.2)
- Repeated eigenvalues (Ch 5.3)

Eigenvalue method

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A x}$
2. Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
3. Find the eigenvalues
4. Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
5. The roots of this polynomial are the eigenvalues λ
6. Find the eigenvectors corresponding to each λ
7. Write down the solutions, use initial conditions if applicable.

Recall: Euler's identity

$$
e^{i x}=\cos (x)+i \sin (x)
$$

Recall: Complex roots of polynomials appear in conjugate pairs

If $p+q i$ is a root of a polynomial with real coefficients, then $p-q i$ is also a root.

Recall: Complex conjugation

$$
\text { If } z=p+q i \text { then } \bar{z}=p-q i
$$

Recall: Superposition principle

If $\mathbf{x}_{1}, \mathbf{x}_{2}$ are solutions to $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, then so is $\mathbf{x}_{1}+\mathbf{x}_{2}$.

Another fact: complex eigenvectors appear in pairs

If \mathbf{v} is the eigenvector of \mathbf{A} corresponding to eigenvalue λ
Then \mathbf{v} is the eigenvector of \mathbf{A} corresponding to eigenvalue $\bar{\lambda}$

In other words,

$$
\text { If } \mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

$$
\text { then } \mathbf{A} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}
$$

Consequence:

If \mathbf{x} is a solution to the $\mathrm{DE}, \operatorname{Re}(\mathbf{x})$ and $\operatorname{Im}(\mathbf{x})$ are also solutions.

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=4 x_{1}-3 x_{2}, \\
& \frac{d x_{2}}{d t}=3 x_{1}+4 x_{2} .
\end{aligned}
$$

- Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A x}$
- Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
- Find the eigenvalues
- Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
- The roots of this polynomial are the eigenvalues λ
- Find the eigenvectors corresponding to each λ
- Write down the solutions
- If complex, take real and imaginary parts to get real solutions

$$
\begin{align*}
& \frac{d x_{1}}{d t}=4 x_{1}-3 x_{2}, \tag{23}\\
& \frac{d x_{2}}{d t}=3 x_{1}+4 x_{2} .
\end{align*}
$$

1. Rewrite in matrix form $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
2. Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
3. Find the eigenvalues
4. Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
5. The roots of this polynomial are the eigenvalues λ
6. Find the eigenvectors corresponding to each λ

- If complex, pair up conjugates and use Euler's identity to get real solutions

5. Write down the solutions

Last time: we saw that

$$
\frac{d \mathbf{x}}{d t}=\left[\begin{array}{ll}
4 & -3 \\
6 & -7
\end{array}\right] \mathbf{x}=\mathbf{P} \mathbf{x}
$$

Has two solutions:

$$
\mathbf{x}=\left[\begin{array}{l}
3 e^{2 t} \\
2 e^{2 t}
\end{array}\right] \quad \text { and } \quad \tilde{\mathbf{x}}=\left[\begin{array}{c}
e^{-5 t} \\
3 e^{-5 t}
\end{array}\right]
$$

And we can take linear combinations to get new solutions:

$$
\mathbf{x}=c_{1}\left[\begin{array}{c}
e^{-5 t} \\
3 e^{-5 t}
\end{array}\right]+c_{2}\left[\begin{array}{l}
3 e^{2 t} \\
2 e^{2 t}
\end{array}\right]
$$

We could choose c_{1} and c_{2} to match initial conditions $\mathbf{x}(0)=a, \quad \mathbf{x}^{\prime}(0)=b$

THEOREM 3 General Solutions of Homogeneous Systems

Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ be n linearly independent solutions of the homogeneous linear equation $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on an open interval I, where $\mathbf{P}(t)$ is continuous. If $\mathbf{x}(t)$ is any solution whatsoever of the equation $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on I, then there exist numbers c_{1}, c_{2}, \ldots, c_{n} such that

$$
\begin{equation*}
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t) \tag{35}
\end{equation*}
$$

for all t in I.

Takeaway: for a $n \times n$ linear system, once we find n linearly independent solutions, we have essentially found them 'all'.

Repeated eigenvalues (Ch 5.5)

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rrr}
9 & 4 & 0 \tag{5}\\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right] \mathbf{x} \text {. }
$$

We are always be looking for n linearly independent eigenvectors, to make sure we have found all solutions.

If an eigenvalue of multiplicity k has k linearly independent eigenvectors, it is said to be complete.

However, when there are repeated roots, there are
sometimes there are not enough linearly independent eigenvectors...

You should always be looking for n linearly independent eigenvectors.

However, sometimes there are not enough linearly independent eigenvectors...

The following matrix only has one eigenvector.

Example 2 The matrix

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & -3 \tag{8}\\
3 & 7
\end{array}\right]
$$

Finding more solutions when there are defective eigenvalues

Let's start with the multiplicity $k=2$ case, it's the simplest.

Situation:

- We are trying to solve $\mathbf{x}^{\prime}=\mathbf{A x}$
- The matrix \mathbf{A} has an eigenvalue λ of multiplicity 2 (repeated root)
- The eigenvalue λ is defective (only 1 linearity independent eigenvector \mathbf{v}_{1} instead of 2).
- So we only have one solution, $\mathbf{x}_{1}=\mathbf{v}_{1} e^{\lambda t}$.
- Need to find another.

Solution: guess $\mathbf{x}_{2}=\mathbf{v}_{1} t e^{\lambda t}+\mathbf{v}_{2} e^{\lambda t} \quad$ where \mathbf{v}_{2} is unknown.

We find that the constraint on \mathbf{v}_{2} is $(\mathbf{A}-\lambda I)^{2} \mathbf{v}_{2}=0$

Note: once we find \mathbf{v}_{2} then $\mathbf{v}_{1}=(\mathbf{A}-\lambda I) \mathbf{v}_{2}$.

ALGORITHM Defective Multiplicity 2 Eigenvalues

1. First find a nonzero solution \mathbf{v}_{2} of the equation

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I})^{2} \mathbf{v}_{2}=\mathbf{0} \tag{16}
\end{equation*}
$$

such that

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{2}=\mathbf{v}_{1} \tag{17}
\end{equation*}
$$

is nonzero, and therefore is an eigenvector \mathbf{v}_{1} associated with λ.
2. Then form the two independent solutions

$$
\mathbf{x}_{1}(t)=\mathbf{v}_{1} e^{\lambda t}
$$

and

$$
\begin{equation*}
\mathbf{x}_{2}(t)=\left(\mathbf{v}_{1} t+\mathbf{v}_{2}\right) e^{\lambda t} \tag{19}
\end{equation*}
$$

of $\mathbf{x}^{\prime}=\mathbf{A x}$ corresponding to λ.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
1 & -3 \\
3 & 7
\end{array}\right] \mathbf{x}
$$

Today:

- Eigenvalue method
- Distinct complex eigenvalues (Ch 5.2)
- Just use Euler's formula + superposition
- Repeated eigenvalues (Ch 5.3)
- If the eigenvalues are defective, must look for generalized eigenvectors
- We only did multiplicity $k=2$, but the same thing works for higher multiplicity.

