MAT303: Calc IV with applications

Lecture 21 - April 21 2021

Last time:

- Linear independence of solutions (Finish Ch 5.1)
- Eigenvalue method (Ch 5.2)
 - Distinct real eigenvalues

Today:

- Eigenvalue method
 - Distinct complex eigenvalues (Ch 5.2)
 - Repeated eigenvalues (Ch 5.3)

Eigenvalue method

- 1. Rewrite in matrix form $\mathbf{x}' = \mathbf{A}\mathbf{x}$
- 2. Use the guess $\mathbf{x} = \mathbf{v}e^{\lambda t}$, get the eigenvalue problem $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$
- 3. Find the eigenvalues
 - 1. Form the characteristic polynomial $det(\mathbf{A} \lambda \mathbf{I}) = 0$
 - 2. The roots of this polynomial are the eigenvalues λ
- 4. Find the eigenvectors corresponding to each λ
- 5. Write down the solutions, use initial conditions if applicable.

Recall: Euler's identity

 $e^{ix} = \cos(x) + i\sin(x)$

Recall: Complex roots of polynomials appear in conjugate pairs

If p + qi is a root of a polynomial with real coefficients, then p - qi is also a root.

Recall: Complex conjugation

If z = p + qi then $\overline{z} = p - qi$.

Recall: Superposition principle

If $\mathbf{x}_1, \mathbf{x}_2$ are solutions to $\mathbf{x}' = \mathbf{A}\mathbf{x}$, then so is $\mathbf{x}_1 + \mathbf{x}_2$.

Another fact: complex eigenvectors appear in pairs

If v is the eigenvector of A corresponding to eigenvalue λ Then **v** is the eigenvector of **A** corresponding to eigenvalue λ

In other words,

If $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ then $A\overline{v} = \overline{\lambda}\overline{v}$

Consequence:

If **x** is a solution to the DE, $Re(\mathbf{x})$ and $Im(\mathbf{x})$ are also solutions.

We can use these facts deal with the case when there are complex eigenvalues.

Find a general solution of the system

$$\frac{dx_1}{dt} = 4x_1 - 3x_2,$$

$$\frac{dx_2}{dt} = 3x_1 + 4x_2.$$
(23)

- Rewrite in matrix form $\mathbf{x}' = \mathbf{A}\mathbf{x}$
- Use the guess $\mathbf{x} = \mathbf{v}e^{\lambda t}$, get the eigenvalue problem $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$
- Find the eigenvalues
 - Form the characteristic polynomial $det(\mathbf{A} \lambda \mathbf{I}) = 0$
 - The roots of this polynomial are the eigenvalues λ
- Find the eigenvectors corresponding to each λ
- Write down the solutions
 - If complex, take real and imaginary parts to get real solutions

Find a general solution of the system

$$\frac{dx_1}{dt} = 4x_1 - 3x_2,$$

$$\frac{dx_2}{dt} = 3x_1 + 4x_2.$$
(23)

- 1. Rewrite in matrix form $\mathbf{x}' = \mathbf{A}\mathbf{x}$
- 2. Use the guess $\mathbf{x} = \mathbf{v}e^{\lambda t}$, get the eigenvalue problem $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$
- 3. Find the eigenvalues
 - 1. Form the characteristic polynomial $det(\mathbf{A} \lambda \mathbf{I}) = 0$
 - 2. The roots of this polynomial are the eigenvalues λ
- 4. Find the eigenvectors corresponding to each λ
 - If complex, pair up conjugates and use Euler's identity to get real solutions
- 5. Write down the solutions

Last time: we saw that

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 4 & -3 \\ 6 & -7 \end{bmatrix} \mathbf{x} = \mathbf{P}\mathbf{x}.$$

Has two solutions:

$$\mathbf{x} = \begin{bmatrix} 3e^{2t} \\ 2e^{2t} \end{bmatrix} \text{ and } \tilde{\mathbf{x}} = \begin{bmatrix} e^{-5t} \\ 3e^{-5t} \end{bmatrix}$$

And we can take linear combinations to get new solutions:

$$\mathbf{x} = c_1 \begin{bmatrix} e^{-5t} \\ 3e^{-5t} \end{bmatrix} + c_2 \begin{bmatrix} 3e^{2t} \\ 2e^{2t} \end{bmatrix}$$

We could choose c_1 and c_2 to match initial conditions $\mathbf{x}(0) = a$, $\mathbf{x}'(0) = b$

THEOREM 3 General Solutions of Homogeneous Systems

Let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ be *n* linearly independent solutions of the homogeneous linear equation $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ on an open interval *I*, where $\mathbf{P}(t)$ is continuous. If $\mathbf{x}(t)$ is any solution whatsoever of the equation $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ on *I*, then there exist numbers c_1 , c_2, \ldots, c_n such that

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) + \dots + c_n \mathbf{x}_n(t)$$
(35)

for all *t* in *I*.

Takeaway: for a $n \times n$ linear system, once we find n linearly independent solutions, we have essentially found them 'all'.

Repeated eigenvalues (Ch 5.5)

Find a general solution of the system

$$\mathbf{x}' = \begin{bmatrix} 9 & 4 & 0 \\ -6 & -1 & 0 \\ 6 & 4 & 3 \end{bmatrix} \mathbf{x}.$$
 (5)

We are always be looking for *n* linearly independent eigenvectors, to make sure we have found all solutions.

If an eigenvalue of multiplicity k has k linearly independent eigenvectors, it is said to be **complete.**

However, when there are repeated roots, there are sometimes there are not enough linearly independent eigenvectors...

You should always be looking for *n* linearly independent eigenvectors.

However, sometimes there are not enough linearly independent eigenvectors...

The following matrix only has one eigenvector.

Example 2	The matrix	
		$\mathbf{A} = \begin{bmatrix} 1 & -3 \\ 3 & 7 \end{bmatrix}$

Let's start with the multiplicity k = 2 case, it's the simplest.

Situation:

- We are trying to solve $\mathbf{x}' = \mathbf{A}\mathbf{x}$
- The matrix **A** has an eigenvalue λ of multiplicity 2 (repeated root)
- The eigenvalue λ is defective (only 1 linearity independent eigenvector \mathbf{v}_1 instead of 2).
- So we only have one solution, $\mathbf{x}_1 = \mathbf{v}_1 e^{\lambda t}$.
- Need to find another.

Solution: guess $\mathbf{x}_2 = \mathbf{v}_1 t e^{\lambda t} + \mathbf{v}_2 e^{\lambda t}$ where \mathbf{v}_2 is unknown.

Finding more solutions when there are defective eigenvalues

We find that the constraint on \mathbf{v}_2 is $(\mathbf{A} - \lambda I)^2 \mathbf{v}_2 = 0$

Note: once we find \mathbf{v}_2 then $\mathbf{v}_1 = (\mathbf{A} - \lambda I)\mathbf{v}_2$.

ALGORITHM Defective Multiplicity 2 Eigenvalues

1. First find a nonzero solution v_2 of the equation

$$(\mathbf{A} - \lambda \mathbf{I})^2 \mathbf{v}_2 = \mathbf{0} \tag{16}$$

such that

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v}_2 = \mathbf{v}_1 \tag{17}$$

is nonzero, and therefore is an eigenvector \mathbf{v}_1 associated with λ .

2. Then form the two independent solutions

$$\mathbf{x}_1(t) = \mathbf{v}_1 e^{\lambda t} \tag{18}$$

and

$$\mathbf{x}_2(t) = (\mathbf{v}_1 t + \mathbf{v}_2)e^{\lambda t} \tag{19}$$

of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ corresponding to λ .

Find a general solution of the system

$$\mathbf{x}' = \begin{bmatrix} 1 & -3 \\ 3 & 7 \end{bmatrix} \mathbf{x}.$$
 (20)

Example of the algorithm

Today:

- Eigenvalue method
 - Distinct complex eigenvalues (Ch 5.2)
 - Just use Euler's formula + superposition
 - Repeated eigenvalues (Ch 5.3)
 - If the eigenvalues are defective, must look for generalized eigenvectors
 - We only did multiplicity k = 2, but the same thing works for higher multiplicity.

