MAT303: Calc IV with applications

Lecture 20 - April 19 2021



Today

Last time:

* Seeing how matrix notation helps us represent systems more compactly

e Basic application of row reduction to solve for coefficients in initial value problems

e Principle of superposition

x’1 = p11(®)x1 + p12(t)x2 + ---
xh = pa1()x1 + paa(t)xs + -+
x5 = p31(t)x1 + p3a(t)xz +---

xrlz = pm1(®)x1 + pna2(t)xy + ---

Today:

+ p1n(®)xn + f1(2),
+ pan(®)xn + f2(2),
+ p3n(t)xn + f3(2),

+ Pnn(t)xn + fn(t)'

e Linear independence of solutions (Finish Ch 5.1)

* Eigenvalue method (Ch 5.2)

(27)

dx
7= P(t)x + £(z).



Recall (lecture 11): linear independence of more than two functions:

DEFINITION Linear Dependence of Functions

The n functions fi, f>, ..., f, are said to be linearly dependent on the interval
I provided that there exist constants cq, ¢, ..., ¢, not all zero such that

cifitcafo+--+cenfn=0 (7)
on /; that is,

c1f1(x) + 2 fo(x) +---+cnfn(x) =0

forall xin /.

Example:

Linear independence of vectors

Definition for vectors is similar:

Independence and General Solutions

Linear independence is defined in the same way for vector-valued functions as for
real-valued functions (Section 3.2). The vector-valued functions x;, X», ..., X, are
linearly dependent on the interval I provided that there exist constants cy, ca, ...,

¢, not all zero such that
> c1X1(t) + c2Xo(t) + -+ cnX, () = 0 (32)

for all £ in 1. Otherwise, they are linearly independent. Equivalently, they are

Example:

Another way to check linear independence is through the Wronksian, see
textbook.



Comparison: systems vs. single DEs

Last time: we saw that

dx _[4 -3
dt |6 -7

]X=PX.

Has two solutions:
[3e2t] 3 [ e—SI]
X = 5 and X = 5
De-! 3!

And we can take linear combinations to get new solutions:

We could choose ¢; and ¢, to match initial conditions x(0) = a,

x'(0)=0>

Compare this to the following single second order equation:

y//_zy/_l_y:O

We can easily find two solutions:

y=-¢e' andy = te’

And we can take linear combinations to get new solutions:

y = cje’ + cyte’

We could choose ¢; and ¢, to match initial conditions y(0) = a, y'(0) =5

- We know that once we find two linearly independent solutions,
all other solutions are linear combinations.



Matrices

Last time: we saw that

dx [4 -3

E= 6 _7]X=PX.

Has two solutions:
[362t] . [ e—SZ]
X = ; and X = -
De-! 3!

And we can take linear combinations to get new solutions:

We could choose ¢; and ¢, to match initial conditions x(0) = a,

x'(0)=0>

THEOREM 3 General Solutions of Homogeneous Systems

Let Xy, X5, ..., X, be n linearly independent solutions of the homogeneous linear
equation X’ = P(7)x on an open interval /, where P(¢) is continuous. If x(¢) is any
solution whatsoever of the equation x’ = P(¢)x on 7, then there exist numbers ¢,
Co, ..., Cn Such that

X(2) = c1X1(?) + c2X2(t) + -+ + caXn(t) (35)

forallzin /.

Takeaway: for a n X n linear system, once we find 7 linearly independent solutions,
we have essentially found them ‘all’.



Fisenvalue method (Ch 5.2)



Eigenvalue method

We wish to find solutions (x, ..., x,) to the system

/
X1 =d11X1 T A12X2 T °** 1T A1pnXn,

/I —
Xy = d21X1 T A22X2 T *** T AypXp,

X, = ap1X1 + An2X2 + 4+ AunXn.

We know from Ch 5.1 that we can write this more compactly as

X = AX

. Make the following guess: X = ve*

e Substitute into DE, giving

e Therefore v and A solve Av = Av

We’ve simplified the problem to an algebraic problem.

How to solve this algebraic problem? AV = AV

This is called an eigenvalue/eigenvector problem.
The A solutions are called eigenvalues of A

The Vv solutions are called eigenvectors of A

Two methods:

e Treat as undetermined system

* Use characteristic polynomial



Example of eigenvalue method

12CIIENE  Find a general solution of the system 3. Solve the eigenvalue problem.

x| = 4x1 + 2x3,
!/
Xy = 3X1 — X2.

Solution  The matrix form of the system in (11) is

x’=[‘31 _f]x. (12)

1. Guess that solution is of the form X = ve*. Substitute into (12).

4. Use eigenvectors to write down solution to the DE.

2. Get an eigenvalue problem.




Example of eigenvalue method

12CIIENE  Find a general solution of the system

x| = 4x1 + 2x3,
x5 = 3x1 — X2.

Solution  The matrix form of the system in (11) is

x’=[‘31 _f]x. (12)

1. Guess that solution is of the form X = ve*. Substitute into (12).

2. Get an eigenvalue problem.

3. Solve the eigenvalue problem. 4. Use eigenvectors to write down solution to the DE.




1 0 0 0 0

01 00 0

. . o . 0 01 0 0

The n X n identity matrix is the matrix I= 00 0 1 0
0 0 0 0 1|

It is useful because for all matrices A, we have IA = Al = A..

To solve the eigenvalue problem Av = Av, we can first find the eigenvalues by
solving the equation

det(A — AI) = 0.

Using characteristic polynomials to find eigenvalues

Using this new method for the previous example:

1. Make the matrix A — A1

2. Find determinant of A — Al

3. Solve for roots A.

10



Using characteristic polynomials to find eigenvalues

Works exactly the same for larger systems:

=

s

SRS
W (]
1|

. Rewrite in matrix form

= —Kk1x1,
klxl —

koxs,

koxy — kixs,

Use the guess X = Ve’“, get the eigenvalue problem Av = Av

Find the eigenvalues

1. Form the characteristic polynomial det(A — AI) = 0
2. The roots of this polynomial are the eigenvalues A

Find the eigenvectors corresponding to each A
Write down the solutions, use initial conditions if applicable.

X' (1) =

- —0.5
0.5
0.0

0.0
—0.25
0.25

0.0
0.0

—0.2
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Using characteristic polynomials to find eigenvalues

Works exactly the same for larger systems:

X1 = —klxl,
kix1 — kaxz,

-
N
|

kox, — kixs,

=
W
|

1. Rewrite in matrix form

Use the guess X = Ve’“, get the eigenvalue problem Av = Av
3. Find the eigenvalues

1. Form the characteristic polynomial det(A — AI) = 0
2. The roots of this polynomial are the eigenvalues A

Find the eigenvectors corresponding to each A
5. Write down the solutions, use initial conditions if applicable.

=

s
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Summary

Today:
« How to reduce the differential equation X’ = Ax

to the eigenvalue problem Av = Av.
 How to solve the eigenvalue problem for some eigenvalues and eigenvectors.

Actually, sometimes we won’t get n real eigenvectors.
There could be missing solutions, or some them could be complex.

We’ll talk about how to deal with those cases next time. (Ch 5.2, 5.5).




