MAT303: Calc IV with applications

Lecture 20 - April 192021

Last time:

- Seeing how matrix notation helps us represent systems more compactly
- Basic application of row reduction to solve for coefficients in initial value problems
- Principle of superposition

$$
\begin{gathered}
x_{1}^{\prime}=p_{11}(t) x_{1}+p_{12}(t) x_{2}+\cdots+p_{1 n}(t) x_{n}+f_{1}(t), \\
x_{2}^{\prime}=p_{21}(t) x_{1}+p_{22}(t) x_{2}+\cdots+p_{2 n}(t) x_{n}+f_{2}(t), \\
x_{3}^{\prime}=p_{31}(t) x_{1}+p_{32}(t) x_{2}+\cdots+p_{3 n}(t) x_{n}+f_{3}(t), \\
\vdots \\
x_{n}^{\prime}=p_{n 1}(t) x_{1}+p_{n 2}(t) x_{2}+\cdots+p_{n n}(t) x_{n}+f_{n}(t) .
\end{gathered}
$$

(27)

$$
\frac{d \mathbf{x}}{d t}=\mathbf{P}(t) \mathbf{x}+\mathbf{f}(t)
$$

Today:

- Linear independence of solutions (Finish Ch 5.1)
- Eigenvalue method (Ch 5.2)

Recall (lecture 11): linear independence of more than two functions:

DEFINITION Linear Dependence of Functions

The n functions $f_{1}, f_{2}, \ldots, f_{n}$ are said to be linearly dependent on the interval I provided that there exist constants $c_{1}, c_{2}, \ldots, c_{n}$ not all zero such that

$$
\begin{equation*}
c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}=0 \tag{7}
\end{equation*}
$$

$$
\text { on } I \text {; that is, } \quad c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0
$$

for all x in I.

Example:

Definition for vectors is similar:

Independence and General Solutions
Linear independence is defined in the same way for vector-valued functions as for real-valued functions (Section 3.2). The vector-valued functions $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ are linearly dependent on the interval I provided that there exist constants c_{1}, c_{2}, \ldots, c_{n} not all zero such that
$>\quad c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)=\mathbf{0}$
for all t in I. Otherwise, they are linearly independent. Equivalently, they are

Example:

Another way to check linear independence is through the Wronksian, see textbook.

Comparison: systems vs. single DEs

Last time: we saw that

$$
\frac{d \mathbf{x}}{d t}=\left[\begin{array}{ll}
4 & -3 \\
6 & -7
\end{array}\right] \mathbf{x}=\mathbf{P} \mathbf{x}
$$

Has two solutions:

$$
\mathbf{x}=\left[\begin{array}{l}
3 e^{2 t} \\
2 e^{2 t}
\end{array}\right] \quad \text { and } \quad \tilde{\mathbf{x}}=\left[\begin{array}{c}
e^{-5 t} \\
3 e^{-5 t}
\end{array}\right]
$$

And we can take linear combinations to get new solutions:

$$
\mathbf{x}=c_{1}\left[\begin{array}{c}
e^{-5 t} \\
3 e^{-5 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
3 e^{2 t} \\
2 e^{2 t}
\end{array}\right]
$$

We could choose c_{1} and c_{2} to match initial conditions $\mathbf{x}(0)=a, \quad \mathbf{x}^{\prime}(0)=b$

Compare this to the following single second order equation:

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

We can easily find two solutions:

$$
y=e^{t} \text { and } y=t e^{t}
$$

And we can take linear combinations to get new solutions:

$$
y=c_{1} e^{t}+c_{2} t e^{t}
$$

We could choose c_{1} and c_{2} to match initial conditions $y(0)=a, \quad y^{\prime}(0)=b$

- We know that once we find two linearly independent solutions, all other solutions are linear combinations.

Last time: we saw that

$$
\frac{d \mathbf{x}}{d t}=\left[\begin{array}{ll}
4 & -3 \\
6 & -7
\end{array}\right] \mathbf{x}=\mathbf{P} \mathbf{x}
$$

Has two solutions:

$$
\mathbf{x}=\left[\begin{array}{l}
3 e^{2 t} \\
2 e^{2 t}
\end{array}\right] \quad \text { and } \quad \tilde{\mathbf{x}}=\left[\begin{array}{c}
e^{-5 t} \\
3 e^{-5 t}
\end{array}\right]
$$

And we can take linear combinations to get new solutions:

$$
\mathbf{x}=c_{1}\left[\begin{array}{c}
e^{-5 t} \\
3 e^{-5 t}
\end{array}\right]+c_{2}\left[\begin{array}{l}
3 e^{2 t} \\
2 e^{2 t}
\end{array}\right]
$$

We could choose c_{1} and c_{2} to match initial conditions $\mathbf{x}(0)=a, \quad \mathbf{x}^{\prime}(0)=b$

THEOREM 3 General Solutions of Homogeneous Systems

Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ be n linearly independent solutions of the homogeneous linear equation $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on an open interval I, where $\mathbf{P}(t)$ is continuous. If $\mathbf{x}(t)$ is any solution whatsoever of the equation $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on I, then there exist numbers c_{1}, c_{2}, \ldots, c_{n} such that

$$
\begin{equation*}
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)+\cdots+c_{n} \mathbf{x}_{n}(t) \tag{35}
\end{equation*}
$$

for all t in I.

Takeaway: for a $n \times n$ linear system, once we find n linearly independent solutions, we have essentially found them 'all'.

Eigenvalue method (Ch 5.2)

We wish to find solutions $\left(x_{1}, \ldots, x_{n}\right)$ to the system

$$
\begin{aligned}
x_{1}^{\prime} & =a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
x_{2}^{\prime} & =a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
& \vdots \\
x_{n}^{\prime} & =a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n} .
\end{aligned}
$$

We know from Ch 5.1 that we can write this more compactly as

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}
$$

- Make the following guess: $\mathbf{x}=\mathbf{v} e^{\lambda t}$
- Substitute into DE, giving
- Therefore \mathbf{v} and λ solve $\mathbf{A v}=\lambda \mathbf{v}$

How to solve this algebraic problem?

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

This is called an eigenvalue/eigenvector problem.
The λ solutions are called eigenvalues of \mathbf{A}
The \mathbf{v} solutions are called eigenvectors of \mathbf{A}

Two methods:

- Treat as undetermined system
- Use characteristic polynomial

Example 1 Find a general solution of the system

$$
\begin{aligned}
& x_{1}^{\prime}=4 x_{1}+2 x_{2} \\
& x_{2}^{\prime}=3 x_{1}-x_{2}
\end{aligned}
$$

Solution The matrix form of the system in (11) is

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
4 & 2 \tag{12}\\
3 & -1
\end{array}\right] \mathbf{x} .
$$

1. Guess that solution is of the form $\mathbf{x}=\mathbf{v} e^{\lambda t}$. Substitute into (12).

Get an eigenvalue problem.
3. Solve the eigenvalue problem.
4. Use eigenvectors to write down solution to the DE.

Example 1 Find a general solution of the system

$$
\begin{aligned}
& x_{1}^{\prime}=4 x_{1}+2 x_{2}, \\
& x_{2}^{\prime}=3 x_{1}-x_{2} .
\end{aligned}
$$

Solution The matrix form of the system in (11) is

$$
\mathbf{x}^{\prime}=\left[\begin{array}{rr}
4 & 2 \tag{12}\\
3 & -1
\end{array}\right] \mathbf{x} .
$$

1. Guess that solution is of the form $\mathbf{x}=\mathbf{v} e^{\lambda t}$. Substitute into (12).
2. Get an eigenvalue problem.
3. Solve the eigenvalue problem.
4. Use eigenvectors to write down solution to the DE.

The $n \times n$ identity matrix is the matrix

Using this new method for the previous example:

1. Make the matrix $\mathbf{A}-\lambda \mathbf{I}$
2. Find determinant of $\mathbf{A}-\lambda \mathbf{I}$
3. Solve for roots λ.

Works exactly the same for larger systems:

$$
\begin{aligned}
& x_{1}^{\prime}=-k_{1} x_{1}, \\
& x_{2}^{\prime}=k_{1} x_{1}-k_{2} x_{2}, \\
& x_{3}^{\prime}=\quad k_{2} x_{2}-k_{3} x_{3},
\end{aligned}
$$

1. Rewrite in matrix form
2. Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
3. Find the eigenvalues
4. Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
5. The roots of this polynomial are the eigenvalues λ
6. Find the eigenvectors corresponding to each λ
7. Write down the solutions, use initial conditions if applicable.

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{rrr}
-0.5 & 0.0 & 0.0 \\
0.5 & -0.25 & 0.0 \\
0.0 & 0.25 & -0.2
\end{array}\right] \mathbf{x}
$$

Works exactly the same for larger systems:

$$
\begin{aligned}
& x_{1}^{\prime}=-k_{1} x_{1} \\
& x_{2}^{\prime}=k_{1} x_{1}-k_{2} x_{2} \\
& x_{3}^{\prime}=\quad k_{2} x_{2}-k_{3} x_{3}
\end{aligned}
$$

1. Rewrite in matrix form
2. Use the guess $\mathbf{x}=\mathbf{v} e^{\lambda t}$, get the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$
3. Find the eigenvalues
4. Form the characteristic polynomial $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
5. The roots of this polynomial are the eigenvalues λ
6. Find the eigenvectors corresponding to each λ
7. Write down the solutions, use initial conditions if applicable.

Today:

- How to reduce the differential equation $\mathbf{x}^{\prime}=\mathbf{A x}$
to the eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$.
- How to solve the eigenvalue problem for some eigenvalues and eigenvectors.

Actually, sometimes we won't get n real eigenvectors.
There could be missing solutions, or some them could be complex.

We'll talk about how to deal with those cases next time. (Ch 5.2, 5.5).

