MAT303: Calc IV with applications

Lecture 20 - April 19 2021

Last time:

- Seeing how matrix notation helps us represent systems more compactly
- Basic application of row reduction to solve for coefficients in initial value problems
- Principle of superposition

$$x_{1}' = p_{11}(t)x_{1} + p_{12}(t)x_{2} + \dots + p_{1n}(t)x_{n} + f_{1}(t),$$

$$x_{2}' = p_{21}(t)x_{1} + p_{22}(t)x_{2} + \dots + p_{2n}(t)x_{n} + f_{2}(t),$$

$$x_{3}' = p_{31}(t)x_{1} + p_{32}(t)x_{2} + \dots + p_{3n}(t)x_{n} + f_{3}(t),$$

$$\vdots$$

$$x_{n}' = p_{n1}(t)x_{1} + p_{n2}(t)x_{2} + \dots + p_{nn}(t)x_{n} + f_{n}(t).$$
(27)

Today:

- Linear independence of solutions (Finish Ch 5.1)
- Eigenvalue method (Ch 5.2)

$$\frac{d\mathbf{x}}{dt} = \mathbf{P}(t)\mathbf{x} + \mathbf{f}(t).$$

Recall (lecture 11): linear independence of more than two functions:

DEFINITION Linear Dependence of Functions

The *n* functions f_1, f_2, \ldots, f_n are said to be **linearly dependent** on the interval I provided that there exist constants c_1, c_2, \ldots, c_n not all zero such that

$$c_1 f_1 + c_2 f_2 + \dots + c_n f_n = 0 \tag{7}$$

on *I*; that is,

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$

for all x in I.

Example:

Definition for vectors is similar:

Independence and General Solutions

Linear independence is defined in the same way for vector-valued functions as for real-valued functions (Section 3.2). The vector-valued functions $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ are **linearly dependent** on the interval I provided that there exist constants c_1, c_2, \ldots , c_n not all zero such that

$$c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) + \dots + c_n \mathbf{x}_n(t) = \mathbf{0}$$
(3)

for all t in I. Otherwise, they are **linearly independent**. Equivalently, they are

Example:

Another way to check linear independence is through the Wronksian, see textbook.

Last time: we saw that

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 4 & -3 \\ 6 & -7 \end{bmatrix} \mathbf{x} = \mathbf{P}\mathbf{x}.$$

Has two solutions:

$$\mathbf{x} = \begin{bmatrix} 3e^{2t} \\ 2e^{2t} \end{bmatrix} \text{ and } \tilde{\mathbf{x}} = \begin{bmatrix} e^{-5t} \\ 3e^{-5t} \end{bmatrix}$$

And we can take linear combinations to get new solutions:

$$\mathbf{x} = c_1 \begin{bmatrix} e^{-5t} \\ 3e^{-5t} \end{bmatrix} + c_2 \begin{bmatrix} 3e^{2t} \\ 2e^{2t} \end{bmatrix}$$

We could choose c_1 and c_2 to match initial conditions $\mathbf{x}(0) = a$, $\mathbf{x}'(0) = b$

Compare this to the following single second order equation:

$$y'' - 2y' + y = 0$$

We can easily find two solutions:

$$y = e^t$$
 and $y = te^t$

And we can take linear combinations to get new solutions:

$$y = c_1 e^t + c_2 t e^t$$

We could choose c_1 and c_2 to match initial conditions y(0) = a, y'(0) = b

• We know that once we find two linearly independent solutions, all other solutions are linear combinations.

Last time: we saw that

$$\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 4 & -3 \\ 6 & -7 \end{bmatrix} \mathbf{x} = \mathbf{P}\mathbf{x}.$$

Has two solutions:

$$\mathbf{x} = \begin{bmatrix} 3e^{2t} \\ 2e^{2t} \end{bmatrix} \text{ and } \tilde{\mathbf{x}} = \begin{bmatrix} e^{-5t} \\ 3e^{-5t} \end{bmatrix}$$

And we can take linear combinations to get new solutions:

$$\mathbf{x} = c_1 \begin{bmatrix} e^{-5t} \\ 3e^{-5t} \end{bmatrix} + c_2 \begin{bmatrix} 3e^{2t} \\ 2e^{2t} \end{bmatrix}$$

We could choose c_1 and c_2 to match initial conditions $\mathbf{x}(0) = a$, $\mathbf{x}'(0) = b$

THEOREM 3 General Solutions of Homogeneous Systems

Let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ be *n* linearly independent solutions of the homogeneous linear equation $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ on an open interval *I*, where $\mathbf{P}(t)$ is continuous. If $\mathbf{x}(t)$ is any solution whatsoever of the equation $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ on *I*, then there exist numbers c_1 , c_2, \ldots, c_n such that

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) + \dots + c_n \mathbf{x}_n(t)$$
(35)

for all *t* in *I*.

Takeaway: for a $n \times n$ linear system, once we find n linearly independent solutions, we have essentially found them 'all'.

Eigenvalue method (Ch 5.2)

We wish to find solutions $(x_1, ..., x_n)$ to the system

$$\begin{aligned} x_1' &= a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n, \\ x_2' &= a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n, \\ &\vdots \\ x_n' &= a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n. \end{aligned}$$

We know from Ch 5.1 that we can write this more compactly as

$$\mathbf{x}' = \mathbf{A}\mathbf{x}$$

- Make the following guess: $\mathbf{x} = \mathbf{v}e^{\lambda t}$
- Substitute into DE, giving
- Therefore **v** and λ solve $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$

We've simplified the problem to an algebraic problem.

Eigenvalue method

How to solve this algebraic problem?

 $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$

This is called an eigenvalue/eigenvector problem.

The λ solutions are called *eigenvalues* of **A**

The v solutions are called *eigenvectors* of A

Two methods:

- Treat as undetermined system
- Use characteristic polynomial

Example 1 Find a general solution of the system

$$\begin{aligned} x_1' &= 4x_1 + 2x_2, \\ x_2' &= 3x_1 - x_2. \end{aligned}$$

Solution The matrix form of the system in (11) is

$$\mathbf{x}' = \begin{bmatrix} 4 & 2\\ 3 & -1 \end{bmatrix} \mathbf{x}.$$

1. Guess that solution is of the form $\mathbf{x} = \mathbf{v}e^{\lambda t}$. Substitute into (12).

2. Get an eigenvalue problem.

Example of eigenvalue method

3.	Solve	the	eigenvalue	problem.
----	-------	-----	------------	----------

(12)

4. Use eigenvectors to write down solution to the DE.

Example 1 Find a general solution of the system

$$\begin{aligned} x_1' &= 4x_1 + 2x_2, \\ x_2' &= 3x_1 - x_2. \end{aligned}$$

Solution The matrix form of the system in (11) is

$$\mathbf{x}' = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix} \mathbf{x}.$$

1. Guess that solution is of the form $\mathbf{x} = \mathbf{v}e^{\lambda t}$. Substitute into (12).

2. Get an eigenvalue problem.

3. Solve the eigenvalue problem.

Example of eigenvalue method

4. Use eigenvectors to write down solution to the DE.

	1	0	0	0	•••	0	
	0	1	0	0	•••	0	
Ŧ	0	0	1	0	•••	0	
1 =	0	0	0	1	•••	0	,
	•	•	•	:		•	
	0	0	0	0	•••	1	

The $n \times n$ identity matrix is the matrix

It is useful because for all matrices A, we have IA = AI = A.

To solve the eigenvalue problem $Av = \lambda v$, we can first find the eigenvalues by solving the equation

 $\det(\mathbf{A} - \lambda \mathbf{I}) = 0.$

Using characteristic polynomials to find eigenvalues

Using this new method for the previous example:			
1. Make the matrix ${f A}-\lambda {f I}$			
2. Find determinant of $\mathbf{A} - \lambda \mathbf{I}$			
3. Solve for roots λ .			

Works exactly the same for larger systems:

$$\begin{array}{l} x_1' = -k_1 x_1, \\ x_2' = k_1 x_1 - k_2 x_2, \\ x_3' = k_2 x_2 - k_3 x_3, \end{array}$$

- 1. Rewrite in matrix form
- 2. Use the guess $\mathbf{x} = \mathbf{v}e^{\lambda t}$, get the eigenvalue problem $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$
- 3. Find the eigenvalues
 - 1. Form the characteristic polynomial $det(\mathbf{A} \lambda \mathbf{I}) = 0$
 - 2. The roots of this polynomial are the eigenvalues λ
- 4. Find the eigenvectors corresponding to each λ
- 5. Write down the solutions, use initial conditions if applicable.

$$\mathbf{x}'(t) = \begin{bmatrix} -0.5 & 0.0 & 0.0 \\ 0.5 & -0.25 & 0.0 \\ 0.0 & 0.25 & -0.2 \end{bmatrix} \mathbf{x},$$

Works exactly the same for larger systems:

$$\begin{array}{l} x_1' = -k_1 x_1, \\ x_2' = k_1 x_1 - k_2 x_2, \\ x_3' = k_2 x_2 - k_3 x_3, \end{array}$$

- 1. Rewrite in matrix form
- 2. Use the guess $\mathbf{x} = \mathbf{v}e^{\lambda t}$, get the eigenvalue problem $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$
- 3. Find the eigenvalues
 - 1. Form the characteristic polynomial $det(\mathbf{A} \lambda \mathbf{I}) = 0$
 - 2. The roots of this polynomial are the eigenvalues λ
- 4. Find the eigenvectors corresponding to each λ
- 5. Write down the solutions, use initial conditions if applicable.

Today:

- How to reduce the differential equation $\mathbf{x}' = \mathbf{A}\mathbf{x}$
 - to the eigenvalue problem $Av = \lambda v$.
- How to solve the eigenvalue problem for some eigenvalues and eigenvectors.

Actually, sometimes we won't get *n* real eigenvectors.

There could be missing solutions, or some them could be complex.

We'll talk about how to deal with those cases next time. (Ch 5.2, 5.5).

