MAT303: Calc IV with applications

Lecture 2 - February 08 2021



Recall:

What is a differential equation

* Why we should study differential equations

Ch1.1: Differential equations and mathematical models

 Ch1.2: Integrals as solutions to differential equations

What/why:

 Many processes in the world can be described by their rate of change
* Rate of change <-> derivative
e Equations involving derivatives are differential equations.

* Differential equations allow us to study mathematical models of physical processes.

Today:

» Different ways of interpreting functions and DEs

» Slope field

Advantages of multiple interpretations
* More opportunities to see when DEs are useful
* Easy to reason about general properties of DEs

e Easy to reason about specific DEs

We will see:
 Why most DE has infinitely many solutions

 Why adding an initial condition makes it unique



Recall:

First order equation where RHS does not depend on v:

First order equation with initial condition:




Slope fields

First order differential equation:

dy
E _f(xay)

Draw the slope field:




example

Slope field

FIGURE 1.3.5. The solution curve

through (—4, 4).
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Applications of slope fields
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Applications of slope fields
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Existence and Uniqueness of solutions

Example:
Intuitively: (0,\b) ((/), 0)

 Differential equations usually have infinitely many solutions dy MR \X. i)
« Adding an initial condition usually narrows it down to a unique solution x— =2y NN N ]
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The technical statement: ey
-2 -1 0 1 2

X

THEOREM 1 Existence and Uniqueness of Solutions

Suppose that both the function f(x, y) and its partial derivative D, f(x, y) are
continuous on some rectangle R in the xy-plane that contains the point (a, b)
in its interior. Then, for some open interval / containing the point a, the initial

value problem
d
> == fxy). y@=b ©)
X
has one and only one solution that is defined on the interval 7. (As illustrated in
Fig. 1.3.11, the solution interval I may not be as “wide” as the original rectangle

R of continuity; see Remark 3 below.)




