MAT303: Calc IV with applications

Lecture 18 - April 122021

So far this class:

- Looking at single differential equations

Rest of the class:

- Systems of differential equations (analogous to systems of algebraic equations)

$$
\begin{aligned}
& x^{\prime}=4 x-3 y \\
& y^{\prime}=6 x-7 y \\
& x(0)=2, \quad y(0)=-1
\end{aligned}
$$

Analogously to algebraic systems, we can try eliminating one of the variables:

Consider the constant coefficient linear equation

$$
>\quad a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

We can rewrite this as

$$
L y=0
$$

where $L=a_{n} D^{n}+a_{n-1} D^{n-1}+a_{n-2} D^{n-2}+\cdots+a_{0}$ is an operator where $D=\frac{d}{d x}$ is the derivative operator

Examples of operator notation:

"Multiplication" of differential operators

$L_{1} L_{2} f$ means $L_{1}\left(L_{2} f\right)$

Constant coefficient polynomial differential operators are commutative

Consider the system

$$
\begin{aligned}
& x^{\prime}=4 x-3 y \\
& y^{\prime}=6 x-7 y \\
& x(0)=2, \quad y(0)=-1
\end{aligned}
$$

We will solve this more systemically, using differential operators.

Rewrite this as:

$$
\begin{array}{r}
-4 x+x^{\prime}+3 y=0 \\
-6 x+7 y+y^{\prime}=0 \\
x(0)=2, \quad y(0)=-1
\end{array}
$$

Rewrite this as:

$$
\begin{array}{r}
(-4+D) x+3 y=0 \\
-6 x+(7+D) y=0 \\
x(0)=2, \quad y(0)=-1
\end{array}
$$

Rewrite this as:

$$
\begin{array}{r}
L_{1} x+L_{2} y=0 \\
L_{3} x+L_{4} y=0 \\
x(0)=2, \quad y(0)=-1
\end{array} \quad \text { Where } \quad L_{1}=D-4, \quad L_{2}=3, \quad L_{3}=-6, \quad L_{4}=D+7
$$

Operate on top equation by L_{3} and bottom equation by L_{1} :

$$
\begin{array}{r}
L_{3} L_{1} x+L_{3} L_{2} y=0 \\
L_{1} L_{3} x+L_{1} L_{4} y=0 \\
x(0)=2, \quad y(0)=-1
\end{array}
$$

Subtract top equation from bottom:

$$
L_{1} L_{4} y-L_{3} L_{2} y=0
$$

This is a single variable equation which we can solve.

In the previous example, the key milestone was rewriting the equation in the form

$$
\begin{aligned}
& L_{1} x+L_{2} y=0 \\
& L_{3} x+L_{4} y=0
\end{aligned}
$$

In general, whenever we can write our system in the form

$$
\begin{aligned}
& L_{1} x+L_{2} y=f_{1}(t) \\
& L_{3} x+L_{4} y=f_{2}(t)
\end{aligned}
$$

we can do the same trick:

- Operate on top equation by L_{3} and bottom equation by L_{1} :

$$
\begin{aligned}
L_{3} L_{1} x+L_{3} L_{2} y & =L_{3} f_{1}(t) \\
L_{1} L_{3} x+L_{1} L_{4} y & =L_{1} f_{2}(t)
\end{aligned}
$$

Subtract top equation from bottom:

$$
L_{1} L_{4} y-L_{3} L_{2} y=L_{1} f_{2}(t)-L_{3} f_{1}(t)
$$

This is a single variable equation which we can solve for y.

- Operate on top equation by L_{4} and bottom equation by L_{2} :

$$
\begin{aligned}
& L_{4} L_{1} x+L_{4} L_{2} y=L_{4} f_{1}(t) \\
& L_{2} L_{3} x+L_{2} L_{4} y=L_{2} f_{2}(t)
\end{aligned}
$$

Subtract bottom equation from top:

$$
L_{4} L_{1} x-L_{2} L_{3} x=L_{4} f_{2}(t)-L_{2} f_{1}(t)
$$

This is a single variable equation which we can solve for x.

Summary:

The solution to

$$
\begin{aligned}
& L_{1} x+L_{2} y=f_{1}(t) \\
& L_{3} x+L_{4} y=f_{2}(t)
\end{aligned}
$$

is given by solving

$$
\left(L_{4} L_{1}-L_{2} L_{3}\right) x=L_{4} f_{2}(t)-L_{2} f_{1}(t)
$$

and

$$
\left(L_{1} L_{4}-L_{3} L_{2}\right) y=L_{1} f_{2}(t)-L_{3} f_{1}(t)
$$

$$
\begin{array}{r}
x^{\prime}-4 x+3 y=t \\
-6 x+y^{\prime}+7 y=0
\end{array}
$$

Rewrite in terms of of differential operators:

According to what we just did:

Summary:

The solution to

$$
\begin{aligned}
& L_{1} x+L_{2} y=f_{1}(t) \\
& L_{3} x+L_{4} y=f_{2}(t)
\end{aligned}
$$

is given by solving

$$
\left(L_{4} L_{1}-L_{2} L_{3}\right) x=L_{4} f_{2}(t)-L_{2} f_{1}(t)
$$

and

$$
\left(L_{1} L_{4}-L_{3} L_{2}\right) y=L_{1} f_{2}(t)-L_{3} f_{1}(t)
$$

Similarity with Cramer's rule

To solve 2×2 linear equation:

$$
\begin{aligned}
a x+b y & =p \\
c x+d y & =q
\end{aligned}
$$

We can use Cramer's rule:

$$
x=\frac{p d-q b}{a d-b c}, \quad y=\frac{a q-c p}{a d-b c}
$$

The solution to

$$
\begin{aligned}
& L_{1} x+L_{2} y=f_{1}(t) \\
& L_{3} x+L_{4} y=f_{2}(t)
\end{aligned}
$$

is given by solving

$$
\left(L_{4} L_{1}-L_{2} L_{3}\right) x=L_{4} f_{2}(t)-L_{2} f_{1}(t)
$$

and

$$
\left(L_{1} L_{4}-L_{3} L_{2}\right) y=L_{1} f_{2}(t)-L_{3} f_{1}(t)
$$

Today:

- Solving systems of first order equations by elimination
- Using polynomial differential operators

Next time: Chapter 5.1

- Better methods for larger systems

