MAT303: Calc IV with applications

Lecture 14 - March 24 2021

Last time:

Physical interpretation of

my'' + cy' + ky = f(t)

in terms of mass-spring systems

- When f(t) = 0, saw that there are 3 regimes, depending on whether c < 4km:
 - Underdamped
 - Critically damped
 - Overdamped

Today:

Solving nonhomogeneous linear DEs

Principle of superposition for homogeneous linear equations:

If y_1 and y_2 are solutions to

ay'' + by' + cy = 0

Then $Ay_1 + By_2$ is also a solution.

Principle of superposition for homogeneous equations	
The q, and q_2 are jobs to a homogeneous linear DE: $q_{(3)=2}$, $p_{(2)=1}^{(1)} + q_{(2)}^{(1)} + r_{(2)}^{(1)} = 0$ (i) Then for any r_{1}, r_{2} $r_{3} = s_{0}^{(1)} + r_{0}^{(2)}$ Then for any r_{1}, r_{2} $r_{3} = s_{0}^{(1)} + r_{0}^{(2)}$ $r_{1} + r_{2} q_{2}$ $r_{3} = s_{0}^{(1)} + r_{0}^{(2)}$ $r_{1} + r_{2} q_{2}$ $r_{1} + r_{2} q_{2}$ $r_{1} + r_{2} q_{2}$ $r_{1} + r_{2} q_{2}$ $r_{1} + r_{2} q_{2}$ $r_{2} + r_{1} + r_{2} q_{2}^{(1)}$ $r_{1} + r_{1} + r_{2} q_{2}^{(1)}$ $r_{1} + r_{1} + r_{2} q_{2}$ $r_{1} + r_{2} + r_{2} q_{2}$	$= p(t) Gy''_{+} + p(t) G_{2} g_{2}'' + q(t) G_{1} g_{1}' + q(t) G_{2} g_{2}'' + q(t) G_{2} g_{2}' + r(t) G_{1} g_{1}' + (t) G_{2} g_{2}' + r(t) G_{1} g_{1}'' + (t) G_{1} g_{2}'' + (t) G_{1} g_{1}'' + (t) G_{1} g_{2}'' + (t) G_{1} g_{1}' + (t) G_{1} g_{2}' + (t) G_{1} g_{2}' + (t) G_{1} g_{1}' + (t) G_{2} g_{2}'' + (t) G_{1} g_{2}' + (t) G_{1} g_{2}' + (t) G_{2} g_{2}' + (t) G_{2} g_{2}'' + (t) G_{1} g_{2}' + (t) G_{2} g_{2}'' + (t) G_{2} g_{2}' + (t) G_{2}$

$$ay'' + by$$

Then
$$Ay_1$$

$$ay'' + by$$

Principle of superposition for non-homogeneous linear equations:

If y_1 is a solution to

 $ay'' + by' + cy = f_1(x)$

and y_2 is a solution to

 $v' + cy = f_2(x)$

 $+ By_2$ is a solution to

 $w' + cy = Af_1(x) + Bf_2(x)$

$$y'' - 4y = 2e^{3x}$$
?

Recall (lecture 11)

THEOREM 5 Solutions of Nonhomogeneous Equations

Let y_p be a particular solution of the nonhomogeneous equation in (2) on an open interval I where the functions p_i and f are continuous. Let y_1, y_2, \ldots, y_n be linearly independent solutions of the associated homogeneous equation in (3). If Y is any solution whatsoever of Eq. (2) on I, then there exist numbers c_1, c_2, \ldots , c_n such that

$$Y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x)$$
(16)

for all x in I.

Roughly speaking:

• All solutions are of the form $Y(x) = y_h + y_p$

where y_h is a solution to the homogeneous version of the equation.

Solution:

y'' + 3y' + 4y = 3x + 2?

Recall (lecture 11)

THEOREM 5 Solutions of Nonhomogeneous Equations

Let y_p be a particular solution of the nonhomogeneous equation in (2) on an open interval I where the functions p_i and f are continuous. Let y_1, y_2, \ldots, y_n be linearly independent solutions of the associated homogeneous equation in (3). If Y is any solution whatsoever of Eq. (2) on I, then there exist numbers c_1, c_2, \ldots , c_n such that

$$Y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x)$$
(16)

for all x in I.

Roughly speaking:

• All solutions are of the form $Y(x) = y_c + y_p$

where y_c is a solution to the homogeneous version of the equation.

Solution:

 $3y'' + 3y' - 2y = 2\cos x?$

Recall (lecture 11)

THEOREM 5 Solutions of Nonhomogeneous Equations

Let y_p be a particular solution of the nonhomogeneous equation in (2) on an open interval I where the functions p_i and f are continuous. Let y_1, y_2, \ldots, y_n be linearly independent solutions of the associated homogeneous equation in (3). If Y is any solution whatsoever of Eq. (2) on I, then there exist numbers c_1, c_2, \ldots , c_n such that

$$Y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x)$$
(16)

for all x in I.

Roughly speaking:

• All solutions are of the form $Y(x) = y_h + y_p$

where y_h is a solution to the homogeneous version of the equation.

Solution:

$$y'' - 4y = 2e^{2x}$$
?

Recall (lecture 11)

THEOREM 5 Solutions of Nonhomogeneous Equations

Let y_p be a particular solution of the nonhomogeneous equation in (2) on an open interval I where the functions p_i and f are continuous. Let y_1, y_2, \ldots, y_n be linearly independent solutions of the associated homogeneous equation in (3). If Y is any solution whatsoever of Eq. (2) on I, then there exist numbers c_1, c_2, \ldots , c_n such that

$$Y(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x) + y_p(x)$$
(16)

for all x in I.

Roughly speaking:

• All solutions are of the form $Y(x) = y_h + y_p$

where y_h is a solution to the homogeneous version of the equation.

Solution:

Assume that only finitely many linearly independent functions appears in the sequence f, f', f'', f''', \dots

RULE 1 Method of Undetermined Coefficients

Suppose that no term appearing either in f(x) or in any of its derivatives satisfies the associated homogeneous equation Ly = 0. Then take as a trial solution for y_p a linear combination of all linearly independent such terms and their derivatives. Then determine the coefficients by substitution of this trial solution into the nonhomogeneous equation Ly = f(x).

To solve constant coefficient linear differential equation ay'' + by' + cy = f(x),

- 1. Find the homogeneous (i.e. complementary) solutions y_c
- 2. Check that f and its derivatives don't satisfy the homogeneous equation
- 3. Determine y_p by guessing y_p = linear combination of f and its derivatives, and solve for coefficients
- 4. General solution is $y_c + y_p$

Method of undetermined coefficients

How to deal with this situation?

$$y'' - 4y = 2e^{2x}.$$

Want to take $y_p = Ae^{2x}$ as trial solution, but it's a solution to the homogeneous equation.

Solution: Multiply trial solution by *x*.

In general:

Assume that only finitely many linearly independent functions appears in the sequence f, f', f'', f''', \ldots

RULE 2 Method of Undetermined Coefficients

If the function f(x) is of either form in (14), take as the trial solution

$$y_p(x) = x^s [(A_0 + A_1 x + A_2 x^2 + \dots + A_m x^m) e^{rx} \cos kx + (B_0 + B_1 x + B_2 x^2 + \dots + B_m x^m) e^{rx} \sin kx],$$
(15)

where s is the smallest nonnegative integer such that no term in y_p duplicates a term in the complementary function y_c . Then determine the coefficients in Eq. (15) by substituting y_p into the nonhomogeneous equation.

Translation: keep multiplying trial solution by *x* until it's no longer a solution to the homogeneous equation.

Consider the equation

 $y'' + y = \tan(x).$

Homogeneous solutions:

 $y = A\cos(x) + B\sin(x)$

Unfortunately, the sequence f, f', f'', ... has infinitely many linearly independent terms.

 $\sec^2 x$, $2 \sec^2 x \tan x$, $4 \sec^2 x \tan^2 x + 2 \sec^4 x$, ...

I.e. The vector space spanned by f and its derivatives is infinite dimensional.

We can't use method of undetermined coefficients.

Variation of parameters

Want to solve
$$y'' + Py' + Qy = f(x)$$

Key ideas:

• Guess $y_p = u_1y_1 + u_2y_2$ where y_1, y_2 are the homogeneous solutions.

Plug this into $L[y_p] = 0$ and see what this tells us about u_1, u_2 .

• We are free to make one more additional constraint to make our computation easier

Variation of parameters

THEOREM 1 Variation of Parameters

If the nonhomogeneous equation y'' + P(x)y' + Q(x)y = f(x) has complementary function $y_c(x) = c_1 y_1(x) + c_2 y_2(x)$, then a particular solution is given by

$$y_p(x) = -y_1(x) \int \frac{y_2(x)f(x)}{W(x)} dx + y_2(x) \int \frac{y_1(x)f(x)}{W(x)} dx, \qquad (33)$$

where $W = W(y_1, y_2)$ is the Wronskian of the two independent solutions y_1 and y_2 of the associated homogeneous equation.

Consider a system of two linear equations in two variables.

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$

The solution using Cramer's Rule is given as

.

$$x = \frac{D_x}{D} = \frac{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}, D \neq 0; \quad y = \frac{D_y}{D} = \frac{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}, D \neq 0.$$

Back to our example:

 $y'' + y = \tan(x).$

Homogeneous solutions:

 $y_1 = \cos(x), y_2 = \sin(x)$

Variation of parameters

Assume that only finitely many linearly independent functions appears in the sequence f, f', f'', f''', \ldots

RULE 1 Method of Undetermined Coefficients

Suppose that no term appearing either in f(x) or in any of its derivatives satisfies the associated homogeneous equation Ly = 0. Then take as a trial solution for y_p a linear combination of all linearly independent such terms and their derivatives. Then determine the coefficients by substitution of this trial solution into the nonhomogeneous equation Ly = f(x).

Need to explain why
$$y_p = C_0 f + C_1 f' + C_2 f'' + \dots + C_n f^{(n)}$$

Proof sketch:

1. Let V be the vector space spanned by f, f', f'', f''', \dots

We are assuming that V is finite dimensional.

- 2. Then *L* is a linear operator $V \rightarrow V$.
- 3. By the rank nullity theorem from linear algebra, one of the two possibilities always holds:
 - Lg = 0 for some $g \in V$, i.e. dim(kerL) > 0.
 - Lg = h always has a solution $g \in V$.
- 4. Therefore, if we assume that the first doesn't hold, then the second must hold.

What about rule 2?

RULE 2 Method of Undetermined Coefficients

If the function f(x) is of either form in (14), take as the trial solution

$$y_p(x) = x^s [(A_0 + A_1 x + A_2 x^2 + \dots + A_m x^m) e^{rx} \cos kx + (B_0 + B_1 x + B_2 x^2 + \dots + B_m x^m) e^{rx} \sin kx],$$
(15)

where s is the smallest nonnegative integer such that no term in y_p duplicates a term in the complementary function y_c . Then determine the coefficients in Eq. (15) by substituting y_p into the nonhomogeneous equation.

Need to explain why
$$y_p = x^s (C_0 f + C_1 f' + C_2 f'' + \dots + C_n f^{(n)})$$

Proof sketch:

1. Let V be the vector space spanned by f, f', f'', f''', \dots

We are assuming that V is finite dimensional.

- 2. Then L is a linear operator $V \rightarrow V$, and $\dim(\ker L) > 0$.
- 3. Consider the vector space $W = \{x^s g : g \in V\}$.
 - Check: If s is small enough, $L: W \to V$.
 - Check: As *s* increases, dim(ker *L*) decreases

4. Therefore, if s is just right, $\dim(\ker L) = 0$ and so Lg = h always a solution $g \in W$.

