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MAT303: Calc IV with applications
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Recently:


• Second order linear differential equations (Ch 3.1)


• Homogeneous equations


• Principle of superposition


• Special case: constant coefficients


• Different cases depending on number of real roots


• Existence and uniqueness


• Linear independence, and general solutions


Today

Today:


• Higher order linear differential equations (Ch 3.2)


• Mostly the same as second order linear differential equations


• Difference: linear independence is more subtle


• Non-homogeneous equations
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Running example

y(3) + 3y′ ′ + 4y′ + 12y = 0

Suppose we know that the  3rd order linear differential equation

has solutions  .y1(x) = e−3x, y2(x) = cos 2x, y3(x) = sin 2x
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Principle of superposition 

• For a second order linear differential equation  




• If  and  are a pair of solutions, then  is another solution


• Proof: Just plug  into the differential equation.


 

y′ ′ + p(x)y′ + q(x)y = 0

y1 y2 C1y1 + C2y2

C1y1 + C2y2

Recap: Principle of superposition for 
 second order linear homogeneous DE

Generalization: Principle of superposition for linear homogeneous DE
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Running example

y(3) + 3y′ ′ + 4y′ + 12y = 0

Suppose we know that the  3rd order linear differential equation

has solutions  .y1(x) = e−3x, y2(x) = cos 2x, y3(x) = sin 2x

1. By the principle of superposition, we know that we can get new solutions by  

taking linear combinations: 

y(x) = c1e−3x + c2 cos 2x + c3 sin 2x
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Existence and uniqueness for higher order DE
• For a second order linear differential equation  




• If  and  and  are nice, for every choice of initial values  and 

,  

a solution will exist.

y′ ′ + p(x)y′ + q(x)y = f(x)

p(x) q(x) f(x) y(a) = α

y′ (a) = β

Generalization: Existence and uniqueness for linear homogeneous DE

• If the coefficient functions are nice, then for every 


• Nth order  need conditions on first derivatives 0…n-1 to specify solution 

completely.

⟹
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Running example

y(3) + 3y′ ′ + 4y′ + 12y = 0

Suppose we know that the  3rd order linear differential equation

has solutions  .y1(x) = e−3x, y2(x) = cos 2x, y3(x) = sin 2x

1. By the principle of superposition, we know that we can get new solutions by  

taking linear combinations: 




2. By the existence and uniqueness theorem for initial value problems, we know 

that there are solutions satisfying any initial conditions 

 E.g. the solution to  

  

is  .

y(x) = c1e−3x + c2 cos 2x + c3 sin 2x

y′ (0) = 0, y′ (0) = 5, y′ ′ (0) = − 39

y(x) = − 3e−3x + 3 cos 2x − 2 sin 2x
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Linear independence

Last time: 

Linear independence of two functions: 
Two functions are linearly independent 
 if they are not multiples of each other

Linear independence of more than two functions: 

How to check that functions   are linearly independent?f1, …, fn
Take the Wronskian:
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Running example

y(3) + 3y′ ′ + 4y′ + 12y = 0

Suppose we know that the  3rd order linear differential equation

has solutions  .y1(x) = e−3x, y2(x) = cos 2x, y3(x) = sin 2x

1. By the principle of superposition, we know that we can get new solutions by  

taking linear combinations: 




2. By the existence and uniqueness theorem for initial value problems, we know 

that there are solutions satisfying any initial conditions, e.g. the solution to  

  

is  .


3. The functions  are linearly independent because the Wronskian is nonzero:

y(x) = c1e−3x + c2 cos 2x + c3 sin 2x

y′ (0) = 0, y′ (0) = 5, y′ ′ (0) = − 39

y(x) = − 3e−3x + 3 cos 2x − 2 sin 2x

y1, y2, y3
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General solutions of homogeneous equations

• For a second order linear homogeneous differential equation 


• If  and  are a pair of linearly independent solutions, then every  

solution is of the form .


• Contrast with the following statement which we already know: 


• If  and  are a pair of solutions, then  is another solution


y1 y2

C1y1 + C2y2

y1 y2 C1y1 + C2y2

Generalization: for the equation

• If  are linearly independent solutions, then all solutions are of the form  

.


• Contrast with the following statement which we already know: 


• If  are solutions, then  is another solution.

y1, …, yn

C1y1 + ⋯ + Cnyn

y1, …, yn C1y1 + ⋯ + Cnyn

Technical statement (Ch 3.2):
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Running example

y(3) + 3y′ ′ + 4y′ + 12y = 0

Suppose we know that the  3rd order linear differential equation

has solutions  .y1(x) = e−3x, y2(x) = cos 2x, y3(x) = sin 2x

1. By the principle of superposition, we know that we can get new solutions by  

taking linear combinations: 




2. By the existence and uniqueness theorem for initial value problems, we know 

that there are solutions satisfying any initial conditions, e.g. the solution to  

  

is  .


3. The functions  are linearly independent because the Wronskian is nonzero.


4. Therefore by Theorem 4, every solution of (1) is of the form (2).

y(x) = c1e−3x + c2 cos 2x + c3 sin 2x

y′ (0) = 0, y′ (0) = 5, y′ ′ (0) = − 39

y(x) = − 3e−3x + 3 cos 2x − 2 sin 2x

y1, y2, y3

(1)

(2)
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Nonhomogenous equations?

Much of what we said only applies to homogeneous equations 

What can we say about non-homogeneous equations

y(n) + p1(x)y(n−1) + ⋯ + pn−1(x)y′ + pn(x)y = f(x)?

Example: Consider

Suppose we know that  is a solution. Are there other solutions?y = x

y(3) + 3y′ ′ + 4y′ + 12y = 12x + 4

Once we have one solution, we can generate  
more solutions by using the homogeneous solutions.


Are there are any more?
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Nonhomogenous equations?

Much of what we said only applies to homogeneous equations 

What can we say about non-homogeneous equations

y(n) + p1(x)y(n−1) + ⋯ + pn−1(x)y′ + pn(x)y = f(x)?

Roughly speaking:

• All solutions are of the form  

 where  is a solution to the homogeneous version of the equation.
Y(x) = yh + yp

yh

(2)

Proof:

Practical takeaway of all this:


• To find general solution of nonhomogeneous equation, 

• We only need to find a single solution 

• Combine this with the general solution to the homogeneous problem.


• For the homogeneous problem, we only need to find  linearly independent solutions  
and then take their linear combination.


yp .

n


