MAT303: Calc IV with applications

Lecture 11 - March 152021

Recently:

- Second order linear differential equations (Ch 3.1)

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

- Homogeneous equations
- Principle of superposition
- Special case: constant coefficients
- Different cases depending on number of real roots
- Existence and uniqueness
- Linear independence, and general solutions

Today:

- Higher order linear differential equations (Ch 3.2)

$$
>\quad y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=0
$$

- Mostly the same as second order linear differential equations
- Difference: linear independence is more subtle
- Non-homogeneous equations

Suppose we know that the 3rd order linear differential equation

$$
y^{(3)}+3 y^{\prime \prime}+4 y^{\prime}+12 y=0
$$

has solutions $y_{1}(x)=e^{-3 x}, \quad y_{2}(x)=\cos 2 x, \quad y_{3}(x)=\sin 2 x$.

Recap: Principle of superposition for second order linear homogeneous DE

- For a second order linear differential equation
$y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$
- If y_{1} and y_{2} are a pair of solutions, then $C_{1} y_{1}+C_{2} y_{2}$ is another solution
- Proof: Just plug $C_{1} y_{1}+C_{2} y_{2}$ into the differential equation.

Principle of superposition for homogeneous equations

Principle of superposition for homogeneous equations	
if y_{1} and y_{2} are solus to a $\underset{\substack{(g r o o)}}{\substack{\text { homerogeneons }}}$ linear $D E$: $p(t) a^{\prime \prime}+q(t) y^{\prime}+r(t) y=0 \quad \text { (1) }$ Then for any c_{1}, c_{2}, $c_{1} y_{1}+C_{2} y_{2}$ is a solu ta (i) Explanation: Plegy $C_{1} y_{1}+C_{2} y_{2}$ rnto (1): $\begin{aligned} & p(t)\left(C_{1} y_{1}^{\prime \prime}+C_{2} y_{2}^{\prime \prime}\right) \\ + & q(t)\left(C_{1} y_{1}^{\prime}+C_{2} y_{2}^{\prime}\right) \\ + & r(t)\left(C_{1} y_{1}+C_{2} y_{2}\right) \end{aligned}$	linear coubination. $\begin{aligned} = & p(t) C_{y_{1}^{\prime \prime}}+p(t) C_{2} y_{2}^{\prime \prime} \\ + & q(t) C_{1} y_{1}^{\prime}+q(t) C_{2} y_{2}^{\prime} \\ & +r(t) C_{1} y_{1} \quad r(t)+C_{2} y_{2} \\ = & =C_{1}\left(p(t) y_{1}^{\prime \prime}+\quad C_{q}(t) y_{2} \prime+\right. \\ & +q(t) \cdot y_{1}^{\prime}+\quad+q^{\prime}(t) y_{2}^{\prime}+ \\ & \left.+r(t) \cdot y_{1}\right) \\ = & C_{1} \cdot 0+C_{2} \cdot 0 \\ = & 0 \end{aligned}$

Generalization: Principle of superposition for linear homogeneous DE

```
> y (n)}+\mp@subsup{p}{1}{}(x)\mp@subsup{y}{}{(n-1)}+\cdots+\mp@subsup{p}{n-1}{}(x)\mp@subsup{y}{}{\prime}+\mp@subsup{p}{n}{}(x)y=0

\section*{THEOREM 1 Principle of Superposition for Homogeneous Equations}

Let \(y_{1}, y_{2}, \ldots, y_{n}\) be \(n\) solutions of the homogeneous linear equation in (3) on the interval \(I\). If \(c_{1}, c_{2}, \ldots, c_{n}\) are constants, then the linear combination
\(>\)
\[
\begin{equation*}
y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n} \tag{4}
\end{equation*}
\]
is also a solution of Eq. (3) on \(I\).

Suppose we know that the 3rd order linear differential equation
\[
y^{(3)}+3 y^{\prime \prime}+4 y^{\prime}+12 y=0
\]
has solutions \(y_{1}(x)=e^{-3 x}, \quad y_{2}(x)=\cos 2 x, \quad y_{3}(x)=\sin 2 x\).
1. By the principle of superposition, we know that we can get new solutions by taking linear combinations:
\(y(x)=c_{1} e^{-3 x}+c_{2} \cos 2 x+c_{3} \sin 2 x\)
- For a second order linear differential equation
\(y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)\)
- If \(p(x)\) and \(q(x)\) and \(f(x)\) are nice, for every choice of initial values \(y(a)=\alpha\) and
\(y^{\prime}(a)=\beta\),
a solution will exist.

THEOREM 2 Existence and Uniqueness for Linear Equations
Suppose that the functions \(p, q\), and \(f\) are continuous on the open interval \(I\) containing the point \(a\). Then, given any two numbers \(b_{0}\) and \(b_{1}\), the equation
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \tag{8}
\end{equation*}
\]
has a unique (that is, one and only one) solution on the entire interval \(I\) that satisfies the initial conditions
\[
\begin{equation*}
y(a)=b_{0}, \quad y^{\prime}(a)=b_{1} . \tag{11}
\end{equation*}
\]

Generalization: Existence and uniqueness for linear homogeneous DE
- If the coefficient functions are nice, then for every
- Nth order \(\Longrightarrow\) need conditions on first derivatives 0...n-1 to specify solution completely.

\section*{THEOREM 2 Existence and Uniqueness for Linear Equations}

Suppose that the functions \(p_{1}, p_{2}, \ldots, p_{n}\), and \(f\) are continuous on the open interval \(I\) containing the point \(a\). Then, given \(n\) numbers \(b_{0}, b_{1}, \ldots, b_{n-1}\), the \(n\) th-order linear equation (Eq. (2))
\[
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=f(x)
\]
has a unique (that is, one and only one) solution on the entire interval \(I\) that satisfies the \(n\) initial conditions
\[
\begin{equation*}
y(a)=b_{0}, \quad y^{\prime}(a)=b_{1}, \quad \ldots, \quad y^{(n-1)}(a)=b_{n-1} . \tag{5}
\end{equation*}
\]

Suppose we know that the 3rd order linear differential equation
\[
y^{(3)}+3 y^{\prime \prime}+4 y^{\prime}+12 y=0
\]
has solutions \(y_{1}(x)=e^{-3 x}, \quad y_{2}(x)=\cos 2 x, \quad y_{3}(x)=\sin 2 x\).
1. By the principle of superposition, we know that we can get new solutions by taking linear combinations:
\(y(x)=c_{1} e^{-3 x}+c_{2} \cos 2 x+c_{3} \sin 2 x\)
2. By the existence and uniqueness theorem for initial value problems, we know that there are solutions satisfying any initial conditions
E.g. the solution to
\(y^{\prime}(0)=0, \quad y^{\prime}(0)=5, \quad y^{\prime \prime}(0)=-39\)
is \(y(x)=-3 e^{-3 x}+3 \cos 2 x-2 \sin 2 x\).

\section*{Last time:}

Linear independence of two functions: Two functions are linearly independent if they are not multiples of each other

Linear independence of more than two functions:

\section*{DEFINITION Linear Dependence of Functions}

The \(n\) functions \(f_{1}, f_{2}, \ldots, f_{n}\) are said to be linearly dependent on the interval \(I\) provided that there exist constants \(c_{1}, c_{2}, \ldots, c_{n}\) not all zero such that
\[
\begin{equation*}
c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}=0 \tag{7}
\end{equation*}
\]
on \(I\); that is,
\[
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0
\]
for all \(x\) in \(I\).
\[
W=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right| .
\]

Suppose we know that the 3rd order linear differential equation
\[
y^{(3)}+3 y^{\prime \prime}+4 y^{\prime}+12 y=0
\]
has solutions \(y_{1}(x)=e^{-3 x}, \quad y_{2}(x)=\cos 2 x, \quad y_{3}(x)=\sin 2 x\).
1. By the principle of superposition, we know that we can get new solutions by taking linear combinations:
\(y(x)=c_{1} e^{-3 x}+c_{2} \cos 2 x+c_{3} \sin 2 x\)
2. By the existence and uniqueness theorem for initial value problems, we know that there are solutions satisfying any initial conditions, e.g. the solution to
\(y^{\prime}(0)=0, \quad y^{\prime}(0)=5, \quad y^{\prime \prime}(0)=-39\)
is \(y(x)=-3 e^{-3 x}+3 \cos 2 x-2 \sin 2 x\).
3. The functions \(y_{1}, y_{2}, y_{3}\) are linearly independent because the Wronskian is nonzero:
\[
\begin{aligned}
W= & \left|\begin{array}{rrr}
e^{-3 x} & \cos 2 x & \sin 2 x \\
-3 e^{-3 x} & -2 \sin 2 x & 2 \cos 2 x \\
9 e^{-3 x} & -4 \cos 2 x & -4 \sin 2 x
\end{array}\right| \\
= & e^{-3 x}\left|\begin{array}{rr}
-2 \sin 2 x & 2 \cos 2 x \\
-4 \cos 2 x & -4 \sin 2 x
\end{array}\right|+3 e^{-3 x}\left|\begin{array}{rr}
\cos 2 x & \sin 2 x \\
-4 \cos 2 x & -4 \sin 2 x
\end{array}\right| \\
& +9 e^{-3 x}\left|\begin{array}{rr}
\cos 2 x & \sin 2 x \\
-2 \sin 2 x & 2 \cos 2 x
\end{array}\right|=26 e^{-3 x} \neq 0 .
\end{aligned}
\]
- For a second order linear homogeneous differential equation
- If \(y_{1}\) and \(y_{2}\) are a pair of linearly independent solutions, then every
solution is of the form \(C_{1} y_{1}+C_{2} y_{2}\).
- Contrast with the following statement which we already know:
- If \(y_{1}\) and \(y_{2}\) are a pair of solutions, then \(C_{1} y_{1}+C_{2} y_{2}\) is another solution

Generalization: for the equation
\[
\begin{equation*}
>\quad y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=0 . \tag{3}
\end{equation*}
\]
- If \(y_{1}, \ldots, y_{n}\) are linearly independent solutions, then all solutions are of the form \(C_{1} y_{1}+\cdots+C_{n} y_{n}\).
- Contrast with the following statement which we already know:
- If \(y_{1}, \ldots, y_{n}\) are solutions, then \(C_{1} y_{1}+\cdots+C_{n} y_{n}\) is another solution.

Technical statement (Ch 3.2)

\section*{THEOREM 4 General Solutions of Homogeneous Equations}

Let \(y_{1}, y_{2}, \ldots, y_{n}\) be \(n\) linearly independent solutions of the homogeneous equation
\[
\begin{equation*}
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=0 \tag{3}
\end{equation*}
\]
on an open interval \(I\) where the \(p_{i}\) are continuous. If \(Y\) is any solution whatsoever of Eq. (3), then there exist numbers \(c_{1}, c_{2}, \ldots, c_{n}\) such that
\[
Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
\]
for all \(x\) in \(I\).

Suppose we know that the 3rd order linear differential equation
\[
\begin{equation*}
y^{(3)}+3 y^{\prime \prime}+4 y^{\prime}+12 y=0 \tag{1}
\end{equation*}
\]
has solutions \(y_{1}(x)=e^{-3 x}, \quad y_{2}(x)=\cos 2 x, \quad y_{3}(x)=\sin 2 x\).
1. By the principle of superposition, we know that we can get new solutions by taking linear combinations:
\(y(x)=c_{1} e^{-3 x}+c_{2} \cos 2 x+c_{3} \sin 2 x\)
2. By the existence and uniqueness theorem for initial value problems, we know that there are solutions satisfying any initial conditions, e.g. the solution to \(y^{\prime}(0)=0, \quad y^{\prime}(0)=5, \quad y^{\prime \prime}(0)=-39\)
is \(y(x)=-3 e^{-3 x}+3 \cos 2 x-2 \sin 2 x\).
3. The functions \(y_{1}, y_{2}, y_{3}\) are linearly independent because the Wronskian is nonzero.
4. Therefore by Theorem 4, every solution of (1) is of the form (2).

Much of what we said only applies to homogeneous equations
\(>\quad y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=0\).

What can we say about non-homogeneous equations
\[
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=f(x) ?
\]

Example: Consider
\[
y^{(3)}+3 y^{\prime \prime}+4 y^{\prime}+12 y=12 x+4
\]

Suppose we know that \(y=x\) is a solution. Are there other solutions?

Once we have one solution, we can generate more solutions by using the homogeneous solutions.

Are there are any more?

Much of what we said only applies to homogeneous equations
\(>\quad y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=0\).

What can we say about non-homogeneous equations
\[
\begin{equation*}
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=f(x) ? \tag{2}
\end{equation*}
\]

\section*{THEOREM 5 Solutions of Nonhomogeneous Equations}

Let \(y_{p}\) be a particular solution of the nonhomogeneous equation in (2) on an open interval \(I\) where the functions \(p_{i}\) and \(f\) are continuous. Let \(y_{1}, y_{2}, \ldots, y_{n}\) be linearly independent solutions of the associated homogeneous equation in (3). If \(Y\) is any solution whatsoever of Eq. (2) on \(I\), then there exist numbers \(c_{1}, c_{2}, \ldots\) \(c_{n}\) such that
\[
\begin{equation*}
Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x) \tag{16}
\end{equation*}
\]
for all \(x\) in \(I\).

\section*{Roughly speaking:}
- All solutions are of the form \(Y(x)=y_{h}+y_{p}\) where \(y_{h}\) is a solution to the homogeneous version of the equation.

\section*{Proof:}
—```

