MAT303: Calc IV with applications

Lecture 9 - March 8 2021



Today

Last time:
e Second order linear differential equations (Ch 3.1)
* Homogeneous equations
* Principle of superposition
* Constant coefficient case
* Real roots

* Imaginary roots

Today:
 Second order linear differential equations (Ch 3.1)
e Existence and uniqueness

* Linear independence, and general solutions



Linear independence of functions

» Consider the functions y; = e¢* and y, = 3e”.
Then Ay, + By, = Ce".

Even though there are seemingly two parameters A and B, it is
really a one parameter family.

- Contrast with the situation y; = e* and y, = 3e*".

Now y = Ay, + By, is genuinely a two-parameter family.

Linear independence of functions:
Two functions are linearly independent
iIf they are not multiples of each other



Constant coefficients: motivating example

Last time: finding the general solution to Things to notice:

 We needed 2 constraints to completely determine the solution.

y'+ 5y +6y=0 Questions:

* [s this the only solution to the I[VP?

Substituted in y = e'” as a guess

5  Why are there solutions at all? Will we always have solutions?
Lead to the equationr“+5r+ 6 =0

 What happens if we change the initial conditions?

Thereforer = — 2, — 3.

2 3

Soy; = e “'and y, = e~ are ‘solutions’.

By superposition, y = Ae "> + Be ' is a solution too

(for any choice of A and B) Another motivating example:

y'=2y'+y=0
Now suppose that we impose an initial condition y(0) = 2 and y’(0) = 3. v(0) = 2
y'(0)=3

We see that if the characteristic has repeated roots we run
Into problems:




Existence and uniqueness

Motivation: How do we know that solutions to differential equations Previous example:
exist? How do we know that there’s only one solution?

y'+35y'+6y=0
THEOREM 2 Existence and Uniqueness for Linear Equations y(0) =2

/ —
Suppose that the functions p, g, and f are continuous on the open interval / Y (O) =2
containing the point a. Then, given any two numbers by and by, the equation

Y+ px)y +qx)y = f(x) (8)

has a unique (that is, one and only one) solution on the entire interval I that

satisfies the initial conditions
An example where the theorem does not apply:

y(@) =bo, y'(a)=b. (11)
v’ + x_ly’ +6y=0
y(0) =2
y'(0) =3

An example where the theorem does apply:

y" +x‘1y’ + 6y =0
y(1) =2
y'(1)=3




Back to our example:

Back to our example: THEOREM 2 Existence and Uniqueness for Linear Equations

Y + 5y + 6y =0 Suppose that the functions p, g, and f are continuous on the open interval I
containing the point a. Then, given any two numbers by and by, the equation
. _ 3 . Y+ p@)y +q(x)y = f(x) (8)
- By superposition, y = Ae > 4+ Be ™' is a solution
(for any choice of A and B) has a unique (that is, one and only one) solution on the entire interval I that

satisfies the initial conditions

y(a) = by, y'(a)=b1. (11)
However, we still don’t “know” that all the solutions are of the form

y =Ae *' + Be™”.

For that, we need this theorem:

THEOREM 4 General Solutions of Homogeneous Equations

Let y; and y, be two linearly independent solutions of the homogeneous equation

(Eq. (9))
y' '+ p(x)y +qx)y =0

with p and g continuous on the open interval 7. If Y is any solution whatsoever
of Eq. (9) on I, then there exist numbers c; and c; such that

Y(x) = c1y1(x) + c2y2(x)

forall x in /.




Wronskian

We see now that it is important to know whether two functions
are linearly independent.

Wronskian:

Here is an easy way to check if two functions are linearly independent. W(f, g) = fog

= fg' - f'g.

THEOREM 3 Wronskians of Solutions

Suppose that y; and y, are two solutions of the homogeneous second-order linear
equation (Eq. (9)) Example: y, = e™, y, = xe
1 /
Y+ pXx)y +4qx)y =0
on an open interval I on which p and g are continuous.
(@) If y; and y, are linearly dependent, then W(y;, y,) =0on I.

—X

(b) If y; and y, are linearly independent, then W(y1, y,) # 0 at each point of 1.

X

Example: y, =e™, y,=4e™




Summary:

* For a second order linear differential equation
y'+p@)y +qx)y =0
* If p(x) and g(x) are nice, for every choice of initial values y(a) = a and y'(a) = p,
a solution will exist.
« If y; and y, are a pair of linearly independent solutions, then every
solution is of the form C,y; + G, .

« We can check if y; and Yy, are linearly independent by computing the Wronskian.

Example:

y'—4y =0

We have two solutions y; = e”* and V) = e 2%,
We also have solutions w; = X 4 =%

and w, = e2x — e—2x_

Conclusion: all solutions are of the form Cle_zx + Czezx

Conclusion: all solutions are of the form C;(e™** 4+ e**) + C,(e™** — e*¥)




Summary:

* For a second order linear differential equation

y'+p)y + qx)y =0
* If p(x) and g(x) are nice, for every choice of initial values y(a) = a and y'(a) = p,
a solution will exist.

« If y; and y, are a pair of linearly independent solutions, then every

solution is of the form C,y; + G, .

« We can check if y; and Yy, are linearly independent by computing the Wronskian.

Example:
y'=2y'+y=0

We have two solutions y; = e* and y, = xe™.

Conclusion: all solutions are of the form C,e* + C,xe*

(This always happens when the characteristic equation has repeated roots)
See Theorem 6 in textbook.




Constant coefficients: the general case
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Constant coefficients: complex roots

Last time: finding the general solution to

y'+2y'+2y=0

Substituted in y = ¢’ as a guess

Lead to the equation 7> + 2r + 2 = 0

Thereforer = — 1 L 1.

(=140t

—i)t

and y, = ¢! are “solutions’.

Soy; =e
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Today

Last time:
e Second order linear differential equations (Ch 3.1)
* Homogeneous equations
* Principle of superposition
* Constant coefficient case
* Real roots

* Imaginary roots

Today:
 Second order linear differential equations (Ch 3.1)
* Constant coefficient case
* Imaginary roots

* Repeated roots
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Leti=\/—1,soi2=—1.

Euler’s identity:

e = cosx + isin(x)

Recall power series:

o0 k

k=0
o0 x2k
_ COsx = (— 1) o,
k=0 (2K)!
00 )C2k+1

X X
e=2H=1+x+2! TR

| b — e
2!

_sin(x) = Z (— 1)

k=0

2k + 1)!

Recall: Complex numbers and Euler’s identity

o ¢l = Z o1
k=0
00 . o2k
® COST = Z(—l) 28]
k=0
i a2kt
e sinz =) (—1)
|
P (2k + 1)!

Example 4.1.3. Suppose that : = 4/—1 is the imaginary unit. Then,

O . o0 X0
' (Zx)k 2k 2k 2k+1 g2kt
1T __ — .
=) = (zk)!J“ZZ (2k + 1)!

2k o0 $2k+1

- ];)(—1)’9 e T ;i(_l)k (2k + 1)!

—CcOSZT +1SInx




