MAT303: Calc IV with applications

Lecture 9 - March 82021

Last time:

- Second order linear differential equations (Ch 3.1)
- Homogeneous equations
- Principle of superposition
- Constant coefficient case
- Real roots
- Imaginary roots

Today:

- Second order linear differential equations (Ch 3.1)
- Existence and uniqueness
- Linear independence, and general solutions
- Consider the functions $y_{1}=e^{x}$ and $y_{2}=3 e^{x}$.

Then $A y_{1}+B y_{2}=C e^{x}$.
Even though there are seemingly two parameters A and B, it is really a one parameter family.

- Contrast with the situation $y_{1}=e^{x}$ and $y_{2}=3 e^{2 x}$.

Now $y=A y_{1}+B y_{2}$ is genuinely a two-parameter family.

Linear independence of functions:
Two functions are linearly independent if they are not multiples of each other

Last time: finding the general solution to
$y^{\prime \prime}+5 y^{\prime}+6 y=0$

- Substituted in $y=e^{r t}$ as a guess
- Lead to the equation $r^{2}+5 r+6=0$
- Therefore $r=-2,-3$.
- So $y_{1}=e^{-2 t}$ and $y_{2}=e^{-3 t}$ are 'solutions'.
- By superposition, $y=A e^{-2 t}+B e^{-3 t}$ is a solution too (for any choice of A and B)

Now suppose that we impose an initial condition $y(0)=2$ and $y^{\prime}(0)=3$.

Things to notice:

- We needed 2 constraints to completely determine the solution.

Questions:

- Is this the only solution to the IVP?
- Why are there solutions at all? Will we always have solutions?
- What happens if we change the initial conditions?

Another motivating example:
$y^{\prime \prime}-2 y^{\prime}+y=0$
$y(0)=2$
$y^{\prime}(0)=3$
We see that if the characteristic has repeated roots we run into problems:

Motivation: How do we know that solutions to differential equations exist? How do we know that there's only one solution?

THEOREM 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p, q, and f are continuous on the open interval I containing the point a. Then, given any two numbers b_{0} and b_{1}, the equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \tag{8}
\end{equation*}
$$

has a unique (that is, one and only one) solution on the entire interval I that satisfies the initial conditions

$$
\begin{equation*}
y(a)=b_{0}, \quad y^{\prime}(a)=b_{1} . \tag{11}
\end{equation*}
$$

Previous example:
$y^{\prime \prime}+5 y^{\prime}+6 y=0$
$y(0)=2$
$y^{\prime}(0)=3$

An example where the theorem does not apply:
$y^{\prime \prime}+x^{-1} y^{\prime}+6 y=0$
$y(0)=2$
$y^{\prime}(0)=3$

An example where the theorem does apply:

$$
\begin{aligned}
& y^{\prime \prime}+x^{-1} y^{\prime}+6 y=0 \\
& y(1)=2 \\
& y^{\prime}(1)=3
\end{aligned}
$$

Back to our example:
$y^{\prime \prime}+5 y^{\prime}+6 y=0$

- By superposition, $y=A e^{-2 t}+B e^{-3 t}$ is a solution (for any choice of A and B)

However, we still don't "know" that all the solutions are of the form $y=A e^{-2 t}+B e^{-3 t}$.

For that, we need this theorem:

THEOREM 4 General Solutions of Homogeneous Equations

Let y_{1} and y_{2} be two linearly independent solutions of the homogeneous equation (Eq. (9))

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

with p and q continuous on the open interval I. If Y is any solution whatsoever of Eq. (9) on I, then there exist numbers c_{1} and c_{2} such that

$$
Y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

for all x in I.

THEOREM 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p, q, and f are continuous on the open interval I containing the point a. Then, given any two numbers b_{0} and b_{1}, the equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \tag{8}
\end{equation*}
$$

has a unique (that is, one and only one) solution on the entire interval I that satisfies the initial conditions

$$
\begin{equation*}
y(a)=b_{0}, \quad y^{\prime}(a)=b_{1} . \tag{11}
\end{equation*}
$$

We see now that it is important to know whether two functions are linearly independent.

Here is an easy way to check if two functions are linearly independent.

THEOREM 3 Wronskians of Solutions

Suppose that y_{1} and y_{2} are two solutions of the homogeneous second-order linear equation (Eq. (9))

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

on an open interval I on which p and q are continuous.
(a) If y_{1} and y_{2} are linearly dependent, then $W\left(y_{1}, y_{2}\right) \equiv 0$ on I.
(b) If y_{1} and y_{2} are linearly independent, then $W\left(y_{1}, y_{2}\right) \neq 0$ at each point of I.

Wronskian:

$$
W(f, g)=\left|\begin{array}{cc}
f & g \\
f^{\prime} & g^{\prime}
\end{array}\right|=f g^{\prime}-f^{\prime} g .
$$

$$
\text { Example: } y_{1}=e^{-x}, \quad y_{2}=x e^{-x}
$$

$$
\text { Example: } y_{1}=e^{-x}, \quad y_{2}=4 e^{-x}
$$

- For a second order linear differential equation
$y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$
- If $p(x)$ and $q(x)$ are nice, for every choice of initial values $y(a)=\alpha$ and $y^{\prime}(a)=\beta$, a solution will exist.
- If y_{1} and y_{2} are a pair of linearly independent solutions, then every

$$
\text { solution is of the form } C_{1} y_{1}+C_{2} y_{2}
$$

- We can check if y_{1} and y_{2} are linearly independent by computing the Wronskian.

Example:

$$
y^{\prime \prime}-4 y=0
$$

We have two solutions $y_{1}=e^{2 x}$ and $y_{2}=e^{-2 x}$.
We also have solutions $w_{1}=e^{2 x}+e^{-2 x}$ and $w_{2}=e^{2 x}-e^{-2 x}$.

Conclusion: all solutions are of the form $C_{1} e^{-2 x}+C_{2} e^{2 x}$
Conclusion: all solutions are of the form $C_{1}\left(e^{-2 x}+e^{2 x}\right)+C_{2}\left(e^{-2 x}-e^{2 x}\right)$

- For a second order linear differential equation
$y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$
- If $p(x)$ and $q(x)$ are nice, for every choice of initial values $y(a)=\alpha$ and $y^{\prime}(a)=\beta$, a solution will exist.
- If y_{1} and y_{2} are a pair of linearly independent solutions, then every solution is of the form $C_{1} y_{1}+C_{2} y_{2}$.
- We can check if y_{1} and y_{2} are linearly independent by computing the Wronskian.

Example:

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

We have two solutions $y_{1}=e^{x}$ and $y_{2}=x e^{x}$.

Conclusion: all solutions are of the form $C_{1} e^{x}+C_{2} x e^{x}$
(This always happens when the characteristic equation has repeated roots) See Theorem 6 in textbook.

Last time: finding the general solution to

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

- Substituted in $y=e^{r t}$ as a guess
- Lead to the equation $r^{2}+2 r+2=0$
- Therefore $r=-1 \pm i$.
- So $y_{1}=e^{(-1+i) t}$ and $y_{2}=e^{(-1-i) t}$ are 'solutions'.

Last time:

- Second order linear differential equations (Ch 3.1)
- Homogeneous equations
- Principle of superposition
- Constant coefficient case
- Real roots
- Imaginary roots

Today:

- Second order linear differential equations (Ch 3.1)
- Constant coefficient case
- Imaginary roots
- Repeated roots

Let $i=\sqrt{-1}$, so $i^{2}=-1$.
Euler's identity:

$$
e^{i x}=\cos x+i \sin (x)
$$

Recall power series:

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\frac{x^{7}}{7!}+\cdots
$$

$$
\text { . } \cos x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots
$$

- $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$
- $\cos x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}$
- $\sin x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}$

Example 4.1.3. Suppose that $i=\sqrt{-1}$ is the imaginary unit. Then,

$$
\begin{aligned}
e^{i x}=\sum_{k=0}^{\infty} \frac{(i x)^{k}}{k!} & =\sum_{k=0}^{\infty} i^{2 k} \frac{x^{2 k}}{(2 k)!}+\sum_{k=0}^{\infty} i^{2 k+1} \frac{x^{2 k+1}}{(2 k+1)!} \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}+\sum_{k=0}^{\infty} i(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!} \\
& =\cos x+i \sin x
\end{aligned}
$$

$$
\sin (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

