MAT200: Logic Language and Proof
Lecture 4 - February 152021

HW1 is graded on gradescope.

Lecture 3:

Example 1: For positive real numbers a, b,

$$
a<b \Longrightarrow a^{2}<b^{2}
$$

Example 4:
$(-1) \cdot 3=-3$

Example:
For any a real, $a \cdot 0=0$.
If a is a real number, then $a \cdot 0=0$

Example 6:
Prove:
if a and b are even, then $a \cdot b$ is even.

* Proof By
* Proof

By

cases

Example 7:
 Prove:

if a and b are even, then $a+b$ is even.

Written up proof:

1. Suppose a and b are numbers.
2. Then $a+b=2\left(\frac{a+b}{2}\right)$.
3. Thus we have shown that $a+b$ is of the form $2 q$ where q is integer.

Where is the mistake?

Lesson:

1. The correctness of a proof is independent of the correctness of the statement.
2. When pinpointing an error, be precise. Stick to things that are actually logically wrong.

Example 2: If $a=1$ or $a=2$ then $a^{2}-3 a+2=0$.
if $a=1$, then

$$
\begin{aligned}
a^{2}-3 a+2 & =(1)^{2}-3(1)+2 \\
& =1-3+2 \\
& =0
\end{aligned}
$$

if $a=2$, then

$$
\begin{aligned}
a^{2}-3 a+2 & =(2)^{2}-3(2)+2 \\
& =4-6+2 \\
& =0
\end{aligned}
$$

QED.

1. Is it true?
2. Make sure you actually understand the statement.
3. Formal understanding
4. Informal understanding
5. Look up all relevant definitions
6. Try some examples.
7. Why is it true? (Rough idea).
8. Translate your idea a nicely written proof.
9. Try to make your proof sound proofs you read from the textbooks).
10. If it sounds awkward, re-write it.
11. Your proof should consist of grammatically correct English sentences.
12. Make sure every leap of logic can be explained.

We need to prove that 101 is not even.
That is, we need to show that
If q is integer, $2 q \neq 101$.
Let q be an integer.
By trichotomy, either $q \leq 50$ or $q \geq 51$.

- If $q \leq 50$, then $2 q \leq 100<101$.
- If $q \geq 51$, then $2 q \geq 102>101$.

In either case, $2 q \neq 101$.

1. Is it true?
2. Make sure you actually understand the statement.
3. Formal understanding
4. Informal understanding

Proof
Ideas
2. Look up all relevant definitions
3. Try some examples.
2. Why is it true? (Rough idea).
3. Translate your idea a nicely written proof.

1. Try to make your proof sound proofs
you read from the textbook(s).
2. If it sounds awkward, re-write it.
3. Your proof should consist of grammatically correct English sentences.
4. Make sure every leap of logic can be explained.

Example:
There do not exist integers m and n such that

$$
14 m+20 n=101
$$

1. Is it true?
2. Make sure you actually understand the statement.
3. Formal understanding
4. Informal understanding
5. Look up all relevant definitions
6. Try some examples.
7. Why is it true? (Rough idea).
8. Translate your idea a nicely written proof.
9. Try to make your proof sound proofs you read from the textbooks).
10. If it sounds awkward, re-write it.
11. Your proof should consist of grammatically correct English sentences.
12. Make sure every leap of logic can be explained.
13. Examples:

$$
\begin{array}{ll}
m=2, n=3 & 14 \times 2+20 \times 3 \neq 101 \\
m=1, n=1 & 14 \times 1+20 \times 7 \neq 101
\end{array}
$$

2.

$\frac{\text { Given }}{\text { min integer }}$
Given
m, n integer
$14 m+20 n$ and $14 m+20 n=101$
Then $16 m+20 n=101$,

$$
2(7 m+10 \Omega)=100
$$

So 101 is even. This contradicts the fact

- Suppose for contradiction that m, n are integers such that $14 m+20 n=101$.
- Then $2(7 m+10 n)=101$.
- Thus $101=2 q$ for some integer q, so 101 is even.
- This contradicts the fact that 101 is odd.

Why it works: if you start with
Some assoaptrous, and they can be used to pat a contradiction one of assangtaous

Trying to prove $\quad 1>0$.

Only Unity law: $1 \cdot a=a$.
reledant axiom:
So $\quad 1=1 \cdot 1$.
know

$$
x^{2}>0
$$

So just need to prove

$$
x^{2}>0 .
$$

$$
\begin{aligned}
& x^{2}=0 \\
& x^{2} \geq 0 \\
& x>0
\end{aligned}
$$

Recall:
$P \Longrightarrow Q \quad$ is equivalent to $\quad \neg Q \Longrightarrow \neg P$
This can used to transform statements into something easier to prove.

Assam
Example: $a>b$

$$
[a c \leq b c \Longrightarrow c \leq 0]
$$

1. Is it true?
2. Make sure you actually understand the statement.
3. Formal understanding
4. Informal understanding
5. Look up all relevant definitions
6. Try some examples.
7. Why is it true? (Rough idea).
8. Translate your idea a nicely written proof.
9. Try to make your proof sound proofs you read from the textbooks).
10. If it sounds awkward, re-write it.
11. Your proof should consist of grammatically correct English sentences.
12. Make sure every leap of logic can be explained.

Axioms 3.1.2
(i) Trichotomy law. For each pair of real numbers a and b, one and only one of the threat, possibilities $a<b, a=b, a>b$ is true.
(ii) Addition law. For real numbers a, band c,

$$
a<b \Leftrightarrow a+c<b+c
$$

(iii) Multiplication law. For real numbers a, band c,

$$
\begin{array}{ll}
a<b \Leftrightarrow a c<b c \quad \text { if } c>\infty \\
a<b \Leftrightarrow a c>b c & \text { if } c<0 .
\end{array}
$$

(iv) Transitive law. For real numbers a, band c,

Assume

$$
a c>b c
$$

We prove the contrapositive: if $c>0$ then $a c>b c$.
This is axiom 3.1.2 ii) in the textbook. $Q \in D$.

Example:
 contradiction / contrapositive.

Equicalenky:
$a b=0$ and $a \neq 0 \Rightarrow b=0$
Generally:
$P \Rightarrow Q$ or R
$\equiv P$ and $\sim Q \Rightarrow R$.

Statement is equivalent to:

$$
a b=0 \quad \text { and } a \neq 0 \Rightarrow b=0
$$

Given
$a b=0$
Want
$b=0$
$a \neq 0$
(vii) Division. If $a \neq 0$, then equation $a x=b$ has the unique solution $x=b / a=b a^{-1}$. (This means that we can cancel: $a x_{1}=a x_{2} \Rightarrow x_{1}=x_{2}$ so long as $a \neq 0$.)

It suffices to prove that
$a b=0$ and $a \neq 0 \Longrightarrow \mathrm{~b}=0$.

Suppose a, b are real numbers such that $a b=0$, and suppose $a \neq 0$.
By. division axiom, $a^{-1} \cdot a=1$.
Multiplying both sides by a^{-1} yields $\frac{a^{-1}}{a^{2}} b=a^{-1} \cdot 0$.
The left hand side is equal to $b_{n} \quad b y \quad$ vito
The right hand side is equal to 0 ., because for all $x, x \cdot 0=0$.
So $b=0$ as desired. $Q E D$.

- Proof by contradiction
- Proof by cases
- Proof by contrapositive
- Proving an 'or’ statement.

Warning: many proofs do not fit neatly into one of these categories.

Especially try to avoid proof by contradiction (usually proof by contrapositive is better).

