MAT200: Logic Language and Proof

Lecture 20 - April 19 2021

Midterm 2 Problem 4

Problem 4 (10 points)

Let X be any set. Let $\operatorname{Fun}(X \to \{0,1\})$ be the set of all functions from X to $\{0,1\}$.

(a) Suppose X = {1,2}. List all the elements of Fun(X → {0,1}).

(b) Now let X be a general set again.

For each of the following functions, determine if they are bijections. Hint: To understand the definitions below, pick concrete examples for X, F and A and try to compute those examples.

If it is a bijection, prove that your answer is correct by explicitly defining the inverse. If it is not a bijection (or not well defined), explain why not.

(a) $f_1 : \underline{\operatorname{Fun}}(X \to \{0, 1\}) \to \mathcal{P}(X)$, where $f_1(F) = \{x \in X : F(x) = 1\}$ (b) $f_2 : \overline{\operatorname{Fun}}(X \to \{0, 1\}) \to \mathcal{P}(X)$, where $f_2(F) = \{x \in X : F(x) = 0\}$ (c) $g : \mathcal{P}(X) \to \operatorname{Fun}(X \to \{0, 1\})$ where g(A) is the function

 $g(A): X \to \{0,1\}, \qquad g(A)(x) = \begin{cases} 1 \text{ if } x \in \bigwedge \\ 0 \text{ if } x \notin \bigwedge \end{cases}$

Last time:

- Proof of irrationality of $\sqrt{2}$
- + Could not extend proof to irrationality of \sqrt{d} for d prime
 - (Could not prove the following fact: if a divides d^2 then a divides d.)

Remainder of class:

• Divisibility, primes, etc.

Last time:

- Proof of irrationality of $\sqrt{2}$
- Could not extend proof to irrationality of \sqrt{d} for d prime
 - (Could not prove the following fact: if a divides d^2 then a divides d.)

Remainder of class:

• Divisibility, primes, etc.

Last time we used the following proof:

Theorem (needed for previous proof): For integer n, if n^2 is divisible by 5, then n is divisible by 5.

Proof:

• Suppose *n* is not divisible by 5, then n = 5q + r where $1 \le r \le 4$.

• Then
$$n^2 = 25q^2 + 5qr + r^2$$
.

• Therefore the remainder of n^2 on division by 5 is the same as the remainder of r^2 .

- There are only 4 possibilities: $r^2 = 1, 4, 9, 16$.
- In all four possibilities, r^2 not divisible by 5.

Hous de me know this?

We're using: Every integer can be written vorquely in the form n= 5q+r, where 9+F

Irrationality of $\sqrt{-2}$

Suppose azo, let **Theorem:** Let $a \in \mathbb{Z}, b \in \mathbb{N}$. Then there exists unique $(q, k) \in \mathbb{Z}$, such that Proof: A= { ke I : kzo and bksa3 $0 \le r \le b$ and a = bq + r. Let q=max A E.g. of a=7 then y=3 r= a-bq Explanation: Then *rzo because bq = a because prab, because it not, a-bg=rzb, 7 = 2 · 3 + 1 s= a-b(q+i)≥0 So black) Sa. This the only (q.r) pair that works, . which contradents the fact that general. So we've found of and m 7-2g+v For uniqueness, suppose 1 71 Only y=3, r=1 works. a=bq, er, and a=bq2 er2 Running example: a=7,5=2 A=20,1,2,3,4,5,6,7--3 and suppose q 2 (otherwise we could switch (abold). $0 \leq r_1 = a - bq_1 \leq a - bq_2 = r_2 < b_$ so US (a-bgz) - (a-bgi) < b So A= 20112133. so $0 \leq b(q_1 - q_2) < b$. SODS q1-q2 <1, SO 91-92=0. QED.

Another application of division theorem

Theorem: Let *n* be an integer and suppose *n* is a perfect square. Then there exists $p \in \mathbb{Z}$ such that n = 3p or 3p+1. Frandes: 36 = 3.12 49= 3.16+1 100 = 3.33+ n² = 3q+2 impossible.

Proof: Suppose n 15 a
perfect square, then
$$n = a^2$$

for some integer a .
(a) There are 3 cases.
(c) There 3 cases.

Notation and language

where 0 < r < b

• Suppose a = bq + n Then *r* is said to be the *remainder when a is divided by q*.

- $q \mid a$ means q divides a, that is (there exists $b \in \mathbb{Z}$ such that a = qb).
- $a \nmid b$ means a does not divide b.

•
$$a \equiv b \mod m$$
 means $m \mid (a - b)$.

Example:
What is remainder when
$$-7$$
 alivided $3.^{\circ}$
 $-7 = -3 \cdot 2 - 1$
 $= -3 \cdot 3 + 2$

renainder:

a) Yes b) No

Theorem: If r is the remainder of a divided by q, then
$$a \equiv r \mod q$$
.
Proof: Will be on the homework.
Examples:
 $7 = 2 - 3 + 1$
 T
 $remainder.$
 $7 \equiv 1 \mod 3$
(heck: $7 - 1 = 6$, $3 \mid 6$.

- Suppose a = bq + r. Then *r* is said to be the *remainder when a is divided by q*.
- $q \mid a$ means q divides a, that is (there exists $b \in \mathbb{Z}$ such that a = qb).
- $a \nmid b$ means a does not divide b.
- $a \equiv b \mod m$ means $m \mid (a b)$.

GCD

Suppose $(a, b) \in \mathbb{Z}^2 - \{(0, 0)\}$

The greatest common divisor of a and b is the unique positive integer d such that

- 1) d is a common divisor: $d \mid b$ and $d \mid a$
- 2) d is larger than any other divisor: If $c \mid a$ and $c \mid b$ then $c \leq d$

We use gcd(a,b) to denote the gcd of a and b.

Is gcd even well defined?	
 What if there are no common divisors? What if there is no largest common divisor? Possible bad behaviour: 	always common devices.
7 is a common divisor of and 2 is a common divisor of ab 3 is a common divisor of ab is a common divisor of ab	· · ·
How to find gcd of 11033442 and 1102246?	a divisor a. i There's
	ouley fenibely rong dovers.

Useful facts about gcd

Example application: **Lemma 16.1.1:** If *b* | *a* then gcd(a,b)=b 60 **Lemma 16.1.2:** For $(a, b) \neq (0, 0)$, if a = bq + r, then gcd(a, b) = gcd(b, r)(2) ged (232, 136) = g cd (136,96) 232=136×1+96 Example application: 2) qcd(96,40) gcd(72, 30)= gcd(30,12) (z) by (2) gcd (40,(6) = qcd (12,6) (27 64 (16,8.) = gcd(16,8.) by (i). () = 8 6 Doos this always woole? Do we always end up apply ing Finding the gcd in this way is called the Euclidean algorithm.

Useful facts about gcd

Lemma 16.1.2: For $(a, b) \neq (0, 0)$, if a = bq + r, then gcd(a, b) = gcd(b, r)