MAT200: Logic Language and Proof

Lecture 20 - April 192021

Problem 4 (10 points)
Let X be any set. Let $\operatorname{Fun}(X \rightarrow\{0,1\})$ be the set of all functions from X to $\{0,1\}$.
(a) Suppose $X=\{1,2\}$. List all the elements of $\operatorname{Fun}(X \rightarrow\{0,1\})$.
(b) Now let X be a general set again.

For each of the following functions, determine if they are bijections. Hint: To understand the definitions below, pick concrete examples for X, F and A and try to compute those examples.
If it is a bijection, prove that your answer is correct by explicitly defining the inverse. If it is not a bijection (or not well defined), explain why not.
(a) $f_{1}: \operatorname{Fun}(X \rightarrow\{0,1\}) \rightarrow \mathcal{P}(X)$, where $f_{1}(F)=\{x \in X: F(x)=1\}$
(b) $f_{2}: \operatorname{Fun}(X \rightarrow\{0,1\}) \rightarrow \mathcal{P}(X)$, where $f_{2}(F)=\{x \in X: F(x)=0\}$
(c) $g: \mathcal{P}(X) \rightarrow \operatorname{Fun}(X \rightarrow\{0,1\})$ where $g(A)$ is the function

$$
g(A): X \rightarrow\{0,1\}, \quad g(A)(x)=\left\{\begin{array}{l}
1 \text { if } x \in\{ \\
0 \text { if } x \notin
\end{array}\right.
$$

a)

Last time:

- Proof of irrationality of $\sqrt{2}$
- Could not extend proof to irrationality of \sqrt{d} for d prime
- (Could not prove the following fact: if a divides d^{2} then a divides d.)

Remainder of class:

- Divisibility, primes, etc.

Last time:

- Proof of irrationality of $\sqrt{2}$
- Could not extend proof to irrationality of \sqrt{d} for d prime
- (Could not prove the following fact: if a divides d^{2} then a divides d.)

Remainder of class:

- Divisibility, primes, etc.

Last time we used the following proof:

Theorem (needed for previous proof):

For integer n, if n^{2} is divisible by 5 , then n is divisible by 5 .

Proof:

- Suppose n is not divisible by 5 , then $n=5 q+r$ where $1 \leq r \leq 4$.
- Then $n^{2}=25 q^{2}+5 q r+r^{2}$.
- Therefore the remainder of n^{2} on division by 5 is the same as the remainder of r^{2}.
- There are only 4 possibilities: $r^{2}=1,4,9,16$.
- In all four possibilities, r^{2} not divisible by 5 .

Theorem: Let $a \in \mathbb{Z}, b \in \mathbb{N}$. Then there exists unique (g), $(r) \mathbb{Z}$, such that $0 \leq r \leq b$ and $a=b(a)+r$.

Explanation:
E.g. if $\begin{aligned} & a=7 \\ & b=2\end{aligned}$ then $q=3$
$r=1$
because

$$
7=2 \cdot 3+1
$$

This the only (q, r) pair that wools,

$$
7=2 a+r
$$

$$
\uparrow \uparrow
$$

Only $q=3, r=1$ works.

$$
\text { So } A=\{0,1,2,3\} \text {. }
$$

Proof:
Suppose $a \geq 0$, let
$A=\{k \in \mathbb{Z}: k \geq 0$ and $b k \leq a\}$
Let

$$
\begin{aligned}
& q=\max A \\
& r=a-b q
\end{aligned}
$$

Then
$* r \geq 0$ because $b q \leqslant a$
$* r<b$, because if not,

$$
\begin{aligned}
& a-b q=r \geq b, \\
& \text { so } \quad a-b(q+1) \geq 0 \\
& \text { so } b(q+1) \leq a .
\end{aligned}
$$

- which contradicts the fact that $q=\operatorname{maxA}$.
So weave found q and r
For uniqueness, sceppore

$$
a=b q_{1}+r_{1} \text { and } a=b q_{2}+r_{2}
$$

and suppose $q\left(\sum\right) q_{2}$ Cotherwise we could switch label s).

$$
\begin{aligned}
0 \leqslant r, & a-b q_{1} \leqslant a-b q_{2}=r_{2}<b \\
\text { so } & =\left(a-b q_{2}\right)-\left(a-b q_{1}\right)<b \\
& \text { so } \quad 0 \leq b\left(q_{1}-q_{2}\right)<b \\
& \text { So } 0 \leqslant q_{1}-q_{2}<1 \quad 1 \text { so } q_{1}-q_{2}=0 . \text { QED. }
\end{aligned}
$$

Theorem: Let n be an integer and suppose n is a perfect square.
Then there exists $p \in \mathbb{Z}$ such that $n=3$ pr $3 \boldsymbol{p}+1$.
Examples:

$$
\begin{aligned}
& 36=3.12 \\
& 4 a=3.16+1 \\
& 100=3.33+1
\end{aligned}
$$

$$
n^{2}=3 q+2 \quad \text { impossible. }
$$

Prose: Suppose perfect square, thea $n=a^{2}$
for some integer a.
a) Theme are 3 cares.

$$
\begin{aligned}
* \text { if } a=3 q & \Rightarrow a^{2}=q q^{2} \\
& \Rightarrow n=3\left(3 q^{2}\right) \\
* \text { if } a=3 q+1 & a^{2}=q q^{2}+6 q+1 \\
& \Rightarrow n
\end{aligned}
$$

$*$ If $\quad a=3 q+2, \quad a^{2}=9 q^{2}+12 q+4$

$$
\Rightarrow \quad x=\frac{3 \underbrace{\left(q^{2}+4 q+1\right)}_{p}+1}{Q \in D}
$$

theoneen.
(we don't have to wormy about $a=3 q+7$) $a=3 q+8$ atc.
where $0 \leq r<b$

- Suppose $a=b q+$ Then r is said to be the remainder when a is divided by q.
- $q \mid a$ means q divides a, that is (there exists $b \in \mathbb{Z}$ such that $a=q b$).
- $a \nmid b$ means a does not divide b .
- " $a \equiv b \bmod \stackrel{\text { " }}{m}$ means $m \mid(a-b)$.

Example:
What is remainder when -7 divided 3 ?
d) Yes
b) N_{0}.

$$
\begin{aligned}
-7 & =-3 \cdot 2-1 \\
& =-3 \cdot 3+2
\end{aligned}
$$

remainder:

Examples:

$$
\begin{aligned}
& 3 \equiv 7 \quad \bmod 4 \\
& (3-7=-4 \quad \text { and } 4(-4) \\
& 3 \equiv 103 \bmod 4 \\
& (3-103=-100 \text { and } 41-100) .
\end{aligned}
$$

$a \equiv 0$ nod m means m / a because $a-0=0$.

Theorem: If r is the remainder of a divided by q , then $a \equiv r \bmod q$. Proof: Will be on the homeworle. Examples:

$$
7=2-\frac{3}{i}+\underset{\substack{i \\ q}}{1}
$$

$7 \equiv 1 \bmod 3$
Check: $\quad 7-1=6, \quad 316$.

- Suppose $a=b q+r$. Then r is said to be the remainder when a is divided by q.
- $q \mid a$ means q divides a, that is (there exists $b \in \mathbb{Z}$ such that $a=q b$).
- $a \nmid b$ means a does not divide b .
- $a \equiv b \bmod m$ means $m \mid(a-b)$.

GED

Suppose $(a, b) \in \mathbb{Z}^{2}-\{(0,0)\}$

The greatest common divisor ${ }^{\prime}$ of a and b is the unique positive integer d such that

1) d is a common divisor: $d \mid b$ and $d \mid a$
2) d is larger than any other divisor: If $c \mid a$ and $c \mid b$ then $c \leq d$

We use $\operatorname{gcd}(a, b)$ to denote the gcd of a and b.

Is ged even well defined?

- What if there are no common divisors? \longleftarrow
- What if there is no largest common divisor? Possible bad behaviour:

How to find ged of 11033442 and 1102246 ?

$1 \leq 3$

$$
\begin{aligned}
& \text { Example: } \operatorname{gcd}(6,15)=3 \\
&\text { chicle: } 1) 316 \text { and } 3 / 15 \\
& \text { 2) Divisors of } 6:(1,2,31,6 \\
& \text { Divisors of } 15: 0,3,5,15
\end{aligned}
$$

$2=2$.

Example application:
(2)

$$
\begin{aligned}
\operatorname{gcd}(232,136) & \stackrel{(2)}{=} \operatorname{gcd}(136,96) \quad 232=136 \times 1+96 \\
& =\operatorname{gcd}(96,40) \\
& (2) \\
& =\operatorname{gcd}(40,(6) \\
& =\operatorname{gcd}(16,8) \\
& (1) \\
& =8
\end{aligned}
$$

Does this always world?
Do we always end up applying ci)?

Finding the ged in this way is called the Euclidean algorithm.

Lemma 16.1.1: If $b \mid a$ then $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{b}$
Proof:
b is a common divisor:
bleb and ila.

Any common divisor c of a and b must be a divisor of b,

So $c \leq b$.
So b is the largest common divisor.

Lemma 16.1.2: For $(a, b) \neq(0,0)$, if $a=b q+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$

Next time.

