MAT200: Logic Language and Proof

Lecture 20 - April 19 2021



Problem 4 (10 points)

Let X be any set. Let Fun(X — {0, 1}) be the set of all functions from X to {0, 1}.

(a) Suppose X = {1,2}. List all the elements of Fun(X — {0, 1}).
(b) Now let X be a general set again.

For each of the following functions, d ine if they are bijecti Hint: To unde d
the definitions below, pick concrete ezamples for X, F and A and try to compute those
ezamples.

If it is a bijection, prove that your answer is correct by explicitly defining the inverse. If
it is not a bijection (or not well defined), explain why not.

@ fi: Fan(X — {0,1}) > P(X), where i(F) = {z € X : F(z) = 1}
(b) fo: Fun(X — {0,1}) — P(X), where fo(F) = { € X : F(x) =0}
(¢) g:P(X) = Fun(X — {0,1}) where g(A) is the function
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Recap

Last time:

« Proof of irrationality of \/5
« Could not extend proof to irrationality of \/;i for d prime
¢ (Could not prove the following fact: if a divides d? then a divides d .)

Remainder of class:

- Divisibility, primes, etc.




Recap

Last time:

* Proof of irrationality of \/5
« Could not extend proof to irrationality of \/:i for d prime
+ (Could not prove the following fact: if a divides d? then a divides d . )

Remainder of class:

« Divisibility, primes, etc.

Last time we used the following proof:

Theorem (needed for previous proof):
For integer n, if n2 is divisible by 3, then n is divisible by 5.

Proof:

-@pose n is not divisible by 5, then n = 5¢g + r where 1 @

« Then n® = 25¢ + 5qr + 1>

« Therefore the remainder of n2 on division By 5 is the same as the remainder of 2.
 There are only 4 possibilities: r2=149.16.

« In all four possibilities, 2 not diyisible by 5.
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Theorem: Let a € Z, b € N. Then there exists unique,
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Theorem: Let n be an integer and suppose 7 is a perfect square.

Then there exists ?e Z such thatn = 3Y>or 3€+ 1.
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Another application of division theorem
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wlie © £ v<b
* Suppose a = bq + %hen ris said to be the remainder when a is divided by q.
» ¢|a means q divides a, that is ( there exists b € Z such that a = gb).
» a } b means a does not divide b.

g W
« a=b mod mmeans m|(a—b).
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Notation and language

Theorem:  If ris the remainder of a divided by g, thena = r mod ¢.
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Notation and language

* Suppose a = bq + r. Then r is said to be the remainder when a is divided by q.
» ¢|a means q divides a, that is ( there exists b € Z such that a = gb).
» a } b means a does not divide b.

« a=b mod mmeans m|(a—b).

GCD

Suppose (a,b) € 7% — {(0,0)}

The greatest common divisor’ of a and b is the unique positive integer d such that

1) dis a common divisor: d|b and d|a

Comevon

2) dis larger than any othe;\divisor: Ifclaand c|bthenc < d

We use gcd(a,b) to denote the gecd of a and b.
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Is gcd even well defined?
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How to find gcd of 11033442 and 11022467



Useful facts about gcd
Lemma 16.1.1: If b | a then gcd(a,b)=b

() Example application:
Lemma 16.1.2: For (a, b) # (0,0), ifzz bg + r, then gcd(a, b) = gcd(b, r)
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Finding the gcd in this way is called the Euclidean algorithm.




Lemma 16.1.1: If b | a then gcd(a,b)=b
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Useful facts about gcd

Lemma 16.1.2: For (a, b) # (0,0), if a = bg + r, then gcd(a, b) = gcd(b, 1)
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