MAT200: Logic Language and Proof

Lecture 17 - April 52021

- Theorem: $\mathbb{R}-\mathbb{Q}$ is nonempty.
- Continue talking about theory of counting for infinite sets
- Theorem: $\mathbb{R}-\mathbb{A}$ is nonempty.

Here
$\mathbb{A}=\{x$: there exists polynomial p with integer coefficients such that $p(x)=0$.

- There are different infinities.

Let A, B be sets.

1) We define $|A| \leq|B|$ to mean that there is an injective function $f: A \rightarrow B$.
2) We define $|A|=|B|$ to mean that there is a bijection between 3) We define $|A|<|B|$ to to mean that $|A| \leq|B|$ and not $(|A|=|B|)$ Last time: Let $A=\mathbb{R}$ and $B=\{x: 0<x<1\}$. Then $|A|=|B|$. Today we'll do more examples

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow(0,1) \\
& f(x)=\frac{\arctan (x)+\frac{\pi}{2}}{\pi} \\
& \text { is a bijection. }
\end{aligned}
$$

$$
|N|=|x|
$$

We define $|A|=|B|$ to mean that there is a bijection between $f: A \rightarrow B$.

Theorem: $|\mathbb{N}|=|\mathbb{Z}|$
Proof:
D efince $\quad f: \mathbb{N} \rightarrow \mathbb{Z}$
by:

$$
f(x)= \begin{cases}\frac{x-1}{2} & x \\ \text { odd } \\ -\frac{x}{2} & x\end{cases}
$$

This is a bijection.
inverse is

$$
g(x)=\left\{\begin{array}{cl}
2 x+1 & x \geq 0 \\
-2 x & x<0
\end{array}\right.
$$

Easy to check fog $=i_{\mathbb{E}}$

$$
g \circ f=1 d_{\mathbb{N}} .
$$

So f is a bijection

To save time, we will define functions from $\mathbb{N} \rightarrow x$ by simply listing elements of x.
E.g. $\quad f: \mathbb{N}_{4} \rightarrow\{1,5,9,4\}$

$$
\begin{aligned}
& f(1)=1 \\
& f(2)=9 \\
& f(3)=5 \\
& f(4)=4
\end{aligned}
$$

Will be written as $f=\quad l, a, 5,4$

$$
\begin{aligned}
& f(1)=0 \\
& f(2)=-1 \\
& f(3)=1 \\
& f(4)=-2 \\
& f(5)=2
\end{aligned}
$$

Rough idea:

$$
\begin{aligned}
& f(1)=0 \\
& f(2)=\frac{1}{1} \\
& f(3)=\frac{1}{2} \\
& f(4)=\frac{1}{3} \\
& f(5)=\frac{1}{4}
\end{aligned}
$$

is it actually a bijection?
No. Because

$$
\begin{aligned}
& f(x) \neq-1 \\
& f(x) \neq 2
\end{aligned}
$$

Prompted Define
$f: N \rightarrow Q$
$f(1)=0$

$$
f(1.0)=\frac{3}{1}
$$

$$
f(2)=\frac{1}{1}
$$

$$
f(1)=\frac{-3}{1}
$$

$$
f(3)=-\frac{1}{1}
$$

$$
f(4)=\frac{1}{2}
$$

$$
f(s)=-\frac{1}{2}
$$

$$
f(c)=\frac{2}{1}
$$

$$
f(7)=\frac{-2}{1}
$$

$$
f(8)=1 / 3
$$

$$
f(a)=-1 / 3
$$

So not even sorjective.

$$
N=\{1,2,3,4, \ldots\}
$$

We define $|A|=|B|$ to mean that there is a bijection between $f: A \rightarrow B$.

Theorem: $|\mathbb{N}|=|\mathbb{Q}|$
Proof: Define

$$
f: \mathbb{N} \rightarrow \mathbb{Q}^{+}
$$

0 ,
$\frac{1}{1}$,
$\frac{1}{2}, \frac{2}{6}$

$$
\begin{aligned}
& \frac{1}{3}, \frac{2}{3}, \frac{3}{2}, \frac{3}{1} \\
& \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{4}{3}, \frac{4}{2}, \frac{4}{1}, \\
& \frac{1}{5}, \frac{2}{5}, \ldots
\end{aligned}
$$

$$
\frac{1}{2}, \frac{2}{9}, \ldots
$$

is this a bijection?
It is surjective:
To gat $p / q, j w_{0} t$ wait ontic the $i^{\text {th }}$ "level".

Not injective:
$\frac{2}{1}$ and $\frac{4}{2}$ appear
twice.
But this easy to fix, just
don't lest the repeats.
So from this I can get
a bijection.
Streamlined proof (Idea: describe f
Define $f: N \rightarrow Q+$ by
the following algorithm:
by describing an algorithen recipedure

* Listing all the rational numbers with denominator less than I.
* Listing all the rational numbers with denominator 2 , and their reciprocals.
\vdots

$$
N=\{1,2,3,4, \ldots\}
$$

We define $|A|=|B|$ to mean that there is a bijection between $f: A \rightarrow B$.

Theorem: $|\mathbb{N}|=|\mathbb{Q}|$
Proof: Define

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \mathbb{Q}^{+} \\
& 0, \\
& \frac{1}{1}, \\
& \frac{1}{2}, \frac{2}{2}, \\
& \frac{1}{3}, \frac{2}{3}, \frac{3}{2}, \frac{3}{1} \\
& \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{4}{3}, \frac{4}{2}, \frac{4}{4}, \\
& \frac{1}{5}, \frac{2}{5}, \ldots . \\
& \frac{1}{2}, \frac{2}{9}, \ldots
\end{aligned}
$$

Streamlined proof (Ideal describe f
Define $f=N \rightarrow Q+$ by by describing
the following algorithm:

* Listing all the rational numbers with denominator less than I.
* Listing all the rational numbers with
denominator with and their reciprocals.
* Skip noubers that have already beer listed.
it's surjective because
To got era, just wart until we ane listing the numbers with denominator q.

We define $|A|=|B|$ to mean that there is a bijection between $f: A \rightarrow B$.

Definition: If $|\mathbb{N}|=|X|$ then X is said to be countably infinite.

Definition: If X_{1}, X_{2}, \ldots is an infinite sequence of sets then $U_{i} X_{i}$ is defined to be the set

$$
\cup_{i} X_{i}=\left\{x: \exists i, \quad x \in X_{i}\right\}
$$

Theorem: If X_{1}, X_{2}, \ldots is an infinite sequence of sets then $\cup_{i} X_{i}$ is countable.
\uparrow
Take-away:
Very "difficult' to get uncountable sets.

Proof: x_{i} countable means
\exists bijection.

$$
f_{i}=x_{i I}, x_{i 2}, x_{i 3}, x_{i}, \ldots
$$

Egg.
$x_{k}=$ rational numbers with denom k

Then

$$
\begin{gathered}
\bigcup_{k} X_{k}=\text { rational numbers } \\
\text { with aug. } \\
\text { denom }
\end{gathered}
$$

Cor sides this

We define $|A|=|B|$ to mean that there is a bijection between $f: A \rightarrow B$ ．

Definition：If $|\mathbb{N}|=|X|$ then X is said to be countably infinite．
Theorem：If X and Y are countably infinite then $X \times Y$ is countably infinite．
Eng．\＃x开 as countable．
Proof：very similar to previous slide．

Egg．

$$
\mathbb{E} \times \mathbb{Z} \times \mathbb{Z}
$$

is countable
because
countable countable． There are lots of countable sets．

Power set of $\{1,2,3\}$ is finite．

Suffices to find surjection $\mathbb{N} \rightarrow A$ to show that A is countable

We define $|A|=|B|$ to mean that there is a bijection between $f: A \rightarrow B$.

Definition: If $|\mathbb{N}|=|X|$ then X is said to be countably infinite.
Theorem: If there exists a surjection $f: \mathbb{N} \rightarrow A$, then A is countable, or finite.

We have the following theorems:

- \mathbb{Z} is countable
- \mathbb{Q} is countable
- Any product of countable sets is countable
- Any union of countable sets is countable
- The set of all possible English/Chinese/Human language texts is countable
* The set of all numbers desribe-able in english; is cocertable.
Can we even think of a set that's not countably infinite?
Consequence:
Yes. $\mathbb{R}_{\boldsymbol{1}}$ \qquad
* cist all tate of length 1 (26)

F-liot all teat of length $2\left(26^{2}\right)$ P-Cist all farts of length $3\left(26^{3}\right)$ This explains the phrase "There are differenfinities". numbers cannot be described.
 some peal

This irfinte list contains all the possible english texts.

Is $P(N)$ countable?
recall $P(N)=\begin{gathered}\text { set } \\ \text { of } \\ \mathbb{N}\end{gathered}$
At temped
proof:

* ϕ, \mathbb{N}
* $\left\{13, \mathbb{N}-\left\{13^{\prime}\right.\right.$
* $\{2\} \quad\{1,2\}, \mathbb{N}-\{1,2\} .1$
$*\{3\},\{1,3\},\{2,3\}, 1\{1,2,3\}, N-\{1,2,3\}, 1 N-\{2,3\}$,
* $\{4\}, \ldots$ all subsets of $\{1,2,3,4\}, \ldots \ldots$
- $\{a, 2\} ;$ all subsets of $\{1,2,3, k \ldots ., a\}$

Is this a bijection?
No, The set of even numbers is not

No. Not surjecrive.
because all the sets in mong list are finite. Missing IN.

$$
\begin{aligned}
& P(A)=\{\Phi,\{1\},\{0\}, A\} . \\
& A=\{0,1\}
\end{aligned}
$$

