MAT200: Logic Language and Proof

Lecture 17 - April 5 2021

Highlights:

• Theorem: $\mathbb{R} - \mathbb{Q}$ is nonempty.

• Theorem: $\mathbb{R}-\mathbb{A}$ is nonempty.

Here

 $\mathbb{A} = \{x : \text{there exists polynomial } p \text{ with integer coefficients such that } p(x) = 0.\}$

• There are different infinities.

· Continue talking about theory of counting for infinite sets

Let A, B be sets.

- We define $|A| \le |B|$ to mean that there is an injective function $f: A \to B$.
- 2) We define |A| = |B| to mean that there is a bijection between $f: A \to B$.
- We define |A| < |B| to to mean that $|A| \le |B|$ and not (|A| = |B|)

Last time: Let $A = \mathbb{R}$ and $B = \{x : 0 < x < 1\}$. Then |A| = |B|.

Today we'll do more examples

.

We define |A| = |B| to mean that there is a bijection between

N= {1,2,3,4, ---- } 丑= 20, -1,1,2,-2,---3.

O efeine f:N > #

by:

 $f: A \to B$.

Proof.

Theorem: $|\mathbb{N}| = |\mathbb{Z}|$

This is a bijection. Inverse is

Easy to check fog = Id #

 $g(x) = \begin{cases} 2x + 1 & x \ge 0 \\ -2x & x < 0 \end{cases}$

909=1dN. t is a sijection

E.g. f: Ng > 21,5,9,43 f(1)=1 f(2) = 9

4(3)=5

défine functions from N > X by simply listing elements of

To save time, we will

4=(4)=4 Will be written as g: 1, a, 5, 4

Rough ideas

f(1) =0 f(2)=-1

> 4(3)=1 もしそうニース

> > もいっ こ

We define |A| = |B| to mean that there is a bijection between $f: A \to B$.

Theorem: $|\mathbb{N}| = |\mathbb{Q}|$

Attempted Pefine

$$f(1) = 0$$

(s it adually a bijection?

$$f(x) = \frac{1}{3}$$

$$f(x) \neq -1$$

$$f(x) \neq 2$$

$$f(i) = 0$$
 $f(i) = \frac{3}{1}$
 $f(i) = \frac{1}{1}$
 $f(i) = \frac{1}{1}$

f(a) = -1/3

į

N= {1,2,3,4, ---- }

We define |A| = |B| to mean that there is a bijection between $f: A \to B$.

Theorem: $|\mathbb{N}| = |\mathbb{Q}|$

ようりのす

1 2.

a bijection. Streamlined Proof (Idea:

is this a bijection?

Patine f: N > Q+ by

the following algorithm:

denominator 2, and their reciprocals.

It is surjective: to get Pla, just went ortil the oth alevel". Not rijective: = and = appear

But this easy to fix, just don't list the regents.

So from this I can get

an algorithun
récipedane

N= {1,2,3,4, --- }

We define |A| = |B| to mean that there is a bijection between $f: A \to B$.

Theorem: $|\mathbb{N}| = |\mathbb{Q}|$

Proof: Define

P·NoQ+

Streamlined Proof (Idea: describe of Define f: N > Qt by describing an algorithm the following algorithm: recipedance protection of the far computing takened numbers with denominator (ess than I.

Listing all the response of the reciprocals.

Listing all the response of the reciprocals.

of Skip numbers that have already been listed.

tis surjective because

To get P/q, just wart until we

are listing the numbers

with denominator q.

12345,	Product of countable sets is countable
	Now four the bijection.
$f:A\to B$. In a substitution of A is said to be countably infinite.	h: x, y, x2, 42, x3, 42
Theorem: If X and Y are countably infinite then $X \cup Y$ is countably infinite.	Ω €D.
Proof: X countables infinite	
=> there is a bijection	* See HW for more formal proof.
f., x, x2, x3, ·	of there is a soull mistake
(courtabley safunte	Example: IR not countably infinite (not proved yet)
=> there is a bijection	intercine (as brever det.)
g. y, y2, y3, R.	1, 2, 3, T, e, T2, 52,4,
3, 12, 13, 1	53, 573,
	In this sense there are
	"different infinities"

We define |A>|=|B>| to mean that there is a bijection between $f:A\to B$.

Definition: If $|\mathbb{N}| = |X|$ then X is said to be **countably infinite**.

Definition: If X_1, X_2, \ldots is an infinite sequence of sets then $\bigcup_i X_i$ is defined to be the set $\bigcup_i X_i = \{x : \exists i, x \in X_i\}$

 $\cup_i X_i = \{x : \exists i, \quad x \in X_i\}$

Theorem: If X_1, X_2, \ldots is an infinite sequence of sets then $\ \cup_i X_i$ is countable.

countable.

Take-away: Veng deffecult to get uncountable sels.

Proof: Xi countable means

3 bijection.

fi: XiI, XiZ, Xi3, Xi4...

ix= rational numbers with deapon k

V Xx = rational numbers with any.

Consider this

f= IN > U X L

We define |A| = |B| to mean that there is a bijection between $f: A \to B$.

Definition: If $|\mathbb{N}| = |X|$ then X is said to be **countably infinite**.

Theorem: If X and Y are countably infinite then $X \times Y$ is countably infinite.

E-g. #x# Es countable.

Proof: very similar to previous

至 * 至 * 至 * 至

Power set of \$1,2,33

We define $\,|A\,|=|B\,|\,$ to mean that there is a bijection between $f:A\to B$.

Definition: If $|\mathbb{N}| = |X|$ then X is said to be **countably infinite**.

Theorem: If there exists a surjection $f: \mathbb{N} \to A$, then A is countable, $\bullet \bullet$

We have the following theorems:

- ℤ is countable
- Q is countable
- · Any product of countable sets is countable
- Any union of countable sets is countable
- The set of all possible English/Chinese/Human language texts is countable

* The set of all numbers destibe-able in english, is countable.

Can we even think of a set that's not countably infinite?

Consequence:

Yes. (R₁

This explains the phrase "There are different infinities".

ies". Le describ

Proof: (for english)

r Ciot all texts of length I (26)

-Cish all feets of dength 2 (26²)

special all tente of dength 3 (26^3)

This infinite list contains all the possible english texts.

Is P(N) countable?

recall P(N) = set of all subsets

of N.

Alterroted

Proof:

29,25 (all subsets of £1,2,316---195)

le this a bijection?

No, The set of even numbers is not

No. Not socjective. because all the sets in my (est are faity. Missing M.

P(A)= {0,13, 203, A}. A={0,13