MAT200: Logic Language and Proof

Lecture 14 - March 242021

Last Time:

- Counting

Today: Using the pigeonhole principle

Theorem (PHP):
Let X and Y be finite sets. If $|X|>|Y|$ then there are no injective functions $f: X \rightarrow Y$.

Suppose you 13 blue socks and 13 red socks in a drawer. If you pick out 3 socks, you are guaranteed to have a matching pair.

Proof idea:

$$
\begin{aligned}
& f(1)=\text { blue } \\
& f(2)=\text { red } \\
& f(3)=\text { red. }
\end{aligned}
$$

Proof using PHP: Let A be finite sefs. $\operatorname{Let}_{\sim} \quad f=A \rightarrow B$.
if $(A|>| B)$, then of is not rijective.

1. Let $A=\{1,2,3\}$.
2. Let $B=\{$ lie, red $\}$.
3. Let $f=A \rightarrow B$, $f(a)=$ the color of the acth socle.
4. By PHD, f is not injective $\Rightarrow J a_{1}, a_{2}$ such that

$$
a_{1} \pm a_{2}, \quad f\left(a_{1}\right)=f\left(a_{2}\right)
$$

the color of the color of
thee a_{1} the sock. $=$ thee $a_{2}^{c} t h$ sock.
In other wards, a_{1} th socle match the $a_{2}{ }^{\prime}$ th sock.
$P \Rightarrow f$ is not injective.

Theorem If 6 distinct numbers are chosen from $\{1,2,3,4,5,6,7,8,9\}$, then 2 of them sum to 10.
Proof idea:

Quiz: How many dam ants in B?
a) $5<$
b) 9
c) 10 .
E.g. $f(3)=\{3,4\}$.

PHP: Let $A B$ be finite sets.
Let $f: A \rightarrow B$.
if $(A|>| B)$, then f is not injective.

1. Let $A=$ The set of 6 nombers chosen
2. Let $B=\{\{19\},\{2,8\},\{3,7\},\{4,6\},\{5\},.\{-3,13\}\}$.
a 3. Let $f=A \rightarrow B, f(a)=$ The set in B that contains a
b) 4. $|A| P C B \mid$, so By PHID, f is not injective $\Rightarrow \exists a_{1}, a_{2}$ such that
$a_{1} * a_{2}, \quad f\left(a_{1}\right)=f\left(a_{2}\right)$
c) So there exerts $a_{1} \neq a_{2}$ s.1.

The set in B The set in B
that contains $a_{1}=$ that contains a_{2} $l d \Rightarrow a_{1}+a_{2}=10 . \quad Q \in D$.

You want to prove a statement, and you've decided
that PHP would be suitable.
Here is what you need to have a complete proof:

1. Pick an appropriate set A.
2. Pick an appropriate set B, such that $|A|>|B|$.
3. Pick a function $f: A->B$.
4. Use pigeonhole principle to deduce f is not injective.
5. Explain why f not being injective proves the statement.

Theorem: If 5 points are chosen in a square of side length 2 ,
Then 2 of them are with $\sqrt{2}$ of each other.
Proof idea:

Proof using PHP:

1. Let $A=$ The 5 points chosen.
2. Let $B=$ The 4 quadrants of the square. .
a) 3. Let $f=A \rightarrow B, f(a)=$ the quadrant containing a.
b) 4. By PHID, f is not injective $\Rightarrow \exists a_{1}, a_{2}$ such that

$$
a_{1} \neq a_{2}, \quad f\left(a_{1}\right)=f\left(a_{2}\right)
$$

the quadrant containing $\left.u_{4} \quad((0.3,0.35), 0.1,-10)\right)$
the quadrant containing a_{2}.
4) 5. So 2 points $\left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right)$
in same unit square
$d) \Longrightarrow$ dist $=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \leqslant \sqrt{1+1}=\sqrt{2}$,

Theorem: If is a set of $n+1$ integers, there exists two whose difference is divisible by n.

Proof idea:

Answer:
$f(34)=$ the set in is containing 34 .

$$
\begin{aligned}
& =\{n k+4: k<\pi\} . \\
& =\{14,24,34,44,54, \ldots\} .
\end{aligned}
$$

Proof using PHP:

1. Let $A=X$, the $n+1$ integers.
 $\{n k+3: k \in \mathbb{\#}\}, \ldots .,\{n k+n-1: k \in \mathbb{Z}\}\}$.
2. Let $f=A \rightarrow B, \quad f(a)=$ the set in B containing a.
3. By PHP, f is not rijective
$\Rightarrow \exists a_{1}, a_{2}$ such that

$$
a_{1} * a_{2}, \quad f\left(a_{1}\right)=f\left(a_{2}\right)
$$

$\Rightarrow a_{1} \in\{n k+j: k \in \mathbb{Z}\} \Rightarrow a_{1}=n k_{1}+j$

$$
a_{2} \in\{n k+j: k \in \mathbb{Z}\} . \Rightarrow a_{2}=n k_{2}+j
$$

$$
\Rightarrow \quad a_{1}-a_{2}=n k_{1}+j-\left(a k_{2}+j\right)=n\left(k_{1}-k_{2}\right) .
$$

S. So $a_{1}-a_{2}$ is divisible by n.

Theorem: If is a set of 31 distinct integers in $\{1,2, \ldots, 60\}$, then there are two elements in \mathbf{X} one of which divides the other.

The proof reties on:
Fact:
Euang integer ${ }^{n}$ may be written in ungedgy the form $n=2^{j} \mathrm{~m}$ where m is odd.

Egg.

$$
\begin{aligned}
& 57=2^{0} \cdot 57 \\
& 36=2^{2} \cdot 9
\end{aligned}
$$

So $f(57)=57, f(36)=9$
Proof: Just keep dividing
by 2 .
(Formally, induction).

1. Let $A=X$
2. Let $B=\{1,3,5, \ldots, 59\}$.
3. Let $f: A \rightarrow B, f(a)=$ the unique odd m suck that $a=x^{i} . m$. 31 elders 30 chars. (This is well defined by fact).
4. By PHID, f is not njective
$\Rightarrow \exists a_{1}, a_{2}$ such that
$a_{1} \neq a_{2}, \quad f\left(a_{1}\right)=f\left(a_{2}\right)$
$\Rightarrow a_{1}=2^{j} m, \quad a_{2}=2^{j_{2}} m-$
$\Rightarrow a_{1}$ divis by a_{2} or vice.

aut

- Last lecture, I claimed that the ability to count is import because it allows us to determine whether or not there are injective functions.
- Pigeonhole principle: If $|\mathrm{X}|>|\mathrm{Y}|$, there are no injections $f: X \rightarrow Y$
- Today, we saw how many problems can be reduced to checking whether or not there is an injective function between certain sets.
- Applications of pigeonhole principle
- Template for proving things using the PHP.

Next time we will prove some shortcuts that are useful for counting.

