MAT200: Logic Language and Proof

Lecture 10 - March 82021

- HW4 Review
- Functions $\longleftarrow \leftarrow \mathrm{Ch} 8$.

$$
\sim 6
$$

1) $P(c)=\{x: x \subset c\}$
2) $C \cap D=\{x: x \in C$ and $x \in D\}$.

Problem 5 (10 points)
3) $E=F$ medan $x \in E \Leftrightarrow x \in F$

Almost complete proof:
(a) Show that $\mathcal{P}(A) \cap \mathcal{P}(B)=\mathcal{P}(A \cap B)$.
(b) Show that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. Under what conditions does equality hold?
(a) By definition of set equality, we have to show that $X \in \mathcal{P}(A) \cap \mathcal{P}(B) \Longleftrightarrow X \in \mathcal{P}(A \cap B)$.

$$
\begin{aligned}
X \in \mathcal{P}(A) \cap \mathcal{P}(B) & \Longleftrightarrow X \in \mathcal{P}(A) \text { and } X \in \mathcal{P}(B) \\
& \Longleftrightarrow X \subseteq A \text { and } X \subseteq B \\
& \Longleftrightarrow X \subseteq A \cap B \\
& \Longleftrightarrow X \in \mathcal{P}(A \cap B)
\end{aligned}
$$

The first equivalence is from definition of \cap. The second equivalence is from definition of \mathcal{P}. The third equivalence is from definition of \cap. The last equivalence is from definition of \mathcal{P}.
Hence, $\mathcal{P}(A) \cap \mathcal{P}(B)=\mathcal{P}(A \cap B)$.
(b) By definition of set equality, we have to show that $X \in \mathcal{P}\left(A \boldsymbol{A}(B) \Longleftrightarrow X \in \mathcal{P}\left(\mathcal{N}_{B}\right)\right.$. We have the following chain of equivalences, obtained by expanding/contracting the relevant definitions:

$$
\begin{aligned}
X \in \mathcal{P}(A) \cup \mathcal{P}(B) & \Longleftrightarrow X \in \mathcal{P}(A) \text { or } X \in \mathcal{P}(B) \\
& \Longleftrightarrow X \subseteq A \text { or } X \subseteq B \\
& \Longleftrightarrow X \subseteq A \cup B \text { 刁 } \times \\
& \Longleftrightarrow X \in \mathcal{P}(A \cup B)
\end{aligned}
$$

So $x \in P(A) \cup P(B) \Rightarrow x \in P(A \cup B)$
Part of proof writing skill is determining what to focus on.
When you have two proofs that are so similar, the interesting parts lie in the differences.

A function is an unambiguous rule for assigning inputs to outputs.

It consists of three parts:

- Domain (a set)
- Range (a set) also called codomarn.
- The actual rule

The rule can be anything, as long as it is unambiguous. It does not have to come from a 'formula'

Example:

$$
\begin{aligned}
\operatorname{sq}): \mathbb{H} & \rightarrow \mathbb{R}, \quad s q^{\prime}(x)=x \cdot x \\
& \rightarrow \rightarrow
\end{aligned}
$$

Sql is different from sq.

Visualizing functions

When you define factions, (domain, range, rule).
they need to "well-defined"'
a) 0) Most epecrty domain, range, rule-
b) 1) The rule should describe the output unombiguocesly.
c) 2) Every input must result in an output. The output must lie in the range.

Not well defined
$\frac{\text { Examples: }}{a)}$ child of $(x)=$ the child of x. chiddof: Humans \rightarrow Humans
b) childof(Dooald Trump). $=$ the child of Doa ald Trump

WHICH ONE??
6) wildOf(Peter lin $)=$ the child of Peter $L_{\text {in }}=$?

Example:

$$
\sqrt{:} \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}
$$

$\sqrt{x}=$ The real a satisfying $a \cdot a=x$.
a) 0) Most ipecrty domain, range, rule \leftarrow
b) 1) The rule, yithenlerge should describe the output uncambiguocesly. $\longleftarrow \frac{\text { fine. }}{\sqrt{9}}=\frac{\$}{3}$
c) 2) Every input must result in an output. The output must lie in the rangeThis is well defamed. (how would you prove that?).

Example:

$$
\sqrt{ }: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}
$$

$\sqrt{x}=$ The real a satisfying $a \cdot a=x$.
a) 0) Most epecrty domain, range, rule \leftarrow
b) 1) The rule, yitheurange should describe the output unambiguously. $\sqrt{9}=-3$?
c) 2) Every input must, result in an output, The output must lie in the range-
This is not well deferred.
(how would you prove that?)
Example:

$$
\sqrt{:}: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}
$$

Not well defined.
$\sqrt{x}=$ The real a satisfying $a \cdot a=x$.
a) 0) Most epecrity domain, range, rule-
b) 1) The rule, dithenreage $^{\text {b }}$ should describe the output unambiguocesly.
c) 2) Every input must result in an output. $\sqrt{-1}=$ The output must lie in the range.
if $g: X \rightarrow Y$ and $f: Y \rightarrow Z$. are functions,
then the composition of f and g is the
function:
$f \circ g: x \rightarrow z \quad f \circ g(x)=f(g(x)) \leftarrow \operatorname{def}$ - of composition.

* t is a faction.
* o is a Panchon
* fog is a function.
$E \cdot g . \quad f: \mathbb{R} \rightarrow \mathbb{R}$
$g: \mathbb{R} \rightarrow \mathbb{R}$
$E \cdot g . \quad f: \mathbb{R} \rightarrow \mathbb{R}$
$g: \mathbb{R} \geq 0 \rightarrow \mathbb{R}$
$f(x)=-x^{2}$
$g(x)=x+1$
Then

$$
\begin{aligned}
& f \circ g: \mathbb{R} \rightarrow \mathbb{R} \text { def= of 'o' } \\
& f \circ g(x)=f(g(x))=(g(x))^{2}=(x+1)^{2}
\end{aligned}
$$

$$
\begin{gathered}
g \circ f(x)=-x^{2}+1 \\
\text { WRONG }
\end{gathered}
$$

gof is not well defined.

- The concept of a function
- The parts of a function:
- Domain, range, rule
- What it means to be well-defined
- The rule has to be applicable to everything in the domain
- The rule should be unambiguous
- Operations on functions
- Composition
- Restriction
- Multiplication, addition
- Special function: Identity function

