MAT200: Logic Language and Proof

Lecture 9 - March 32021

Midterm 1:

- Next Wednesday in lecture, proctored over zoom
- Covers everything up to and including this lecture.
- See HW, and "practice problems" on website for practice problems.
- Allowed: textbook, lecture slides,
your own notes based on the lecture notes
- A random selection of students will be asked to set up a

10 minute meeting with me in the week after the exam to discuss their solutions

- It is only to verify that you did not cheat
- It's not meant to be very intense, it's usually pretty easy to determine between
- Someone who cheated
- Someone who did not
$\mathrm{P}(\mathrm{N})=\forall x \in \mathbb{Z}: 1<x<N \Longrightarrow \neg(\exists d \in \mathbb{Z}, \quad d x=N)$
$\forall N \in \mathbb{Z}, \exists M \in \mathbb{Z}: M>N$ and $P(M)$
\forall means "For all"
\exists means "There exists"

We've seen some examples of \neg applied to statements.

It can be a bit tricky, so here are some tips to check if you negated it correctly:

- Only one of the sentences $P, \neg P$ can be true.
- One of $P, \neg P$ should be true (even if you don't know which one).
- When P is true, $\neg P$ should be false, and vice versa.

Example: $P=$ Everyone has a valid ticket
Which one is correct?
$\neg P=$ No-on has a valid ticket
$\neg P=$ Someone has a valid ticket
$\neg P=$ Everyone does not have a valid ticket
$\neg P=$ Someone does not have a valid ticket

With quantifiers:
Let $\mathrm{Q}(\mathrm{x})$ be the statement "Person x has a valid train ticket"

In general:

- $A \cup B=\{x: x \in A$ or $x \in B\}$
- $A \cap B=\{x: x \in A$ and $x \in B\}$
- $\varnothing=\{ \}$
- $\mathscr{P}(A)=\{X: X \subset A\}$
- $A \times B=\{(a, b): a \in A$ and $b \in B\}$
- $A-B=\{x: x \in A$ and $x \notin B\}$
- $A^{c}=U-A$
$\forall x \in \mathbb{R}: x^{2} \geq 0$
$\exists x \in \mathbb{R}: x^{2}=9$
$\forall n \in \mathbb{Z}:\left((\exists q \in \mathbb{Z}: n=2 q) \Longrightarrow\left(\exists q \in \mathbb{Z}: n^{2}=2 q\right)\right)$

1. $\mathrm{P}(\mathrm{N})=\forall x \in \mathbb{Z}: 1<x<N \Longrightarrow \neg(\exists d \in \mathbb{Z}, \quad d x=N)$.
$\forall N \in \mathbb{Z}, \exists M \in \mathbb{Z}: M>N$ and $P(M)$

Principle of induction:
Let $\mathrm{P}(\mathrm{n})$ be a predicate. If the following statements are true:

- $P(1)$
- $P(n) \Longrightarrow P(n+1)$

Then the following statement is also true:

- For all $n \geq 1$, we have that $P(n)$ is true.

2. Let A be a subset of positive integers. If

- $1 \in A$
- $\forall k \in \mathbb{Z}^{+}(k \in A \Longrightarrow k+1 \in A)$

Then $\mathrm{A}=\mathbb{Z}^{+}$.

Principle of induction:

Let $\mathrm{P}(\mathrm{n})$ be a predicate. If the following statements are true

- $P(1)$
- $P(n) \Longrightarrow P(n+1)$

Then the following statement is also true:

- For all $n \geq 1$, we have that $P(n)$ is true.

2. Let A be a subset of positive integers. If

- $1 \in A$
- $\forall k \in \mathbb{Z}^{+}(k \in A \Longrightarrow k+1 \in A)$

Then $\mathrm{A}=\mathbb{Z}^{+}$.

