MAT200: Logic Language and Proof

Lecture 5 - February 172021

Today: Proof by induction

- I will not mention some things but you should think about the implicit assumptions that we make.

Prove that

$x^{2}=0 \Longrightarrow x=0$.

Incorrect (not even wrong) Proof:

$$
\begin{aligned}
& x^{2}=0 \text { then } x=0 \text { if } x \neq 0 \\
& \text { where } x^{2}=0=p \text { and } \mathrm{x}=0=\mathrm{q} \\
& \text { then } x^{2} \neq 0 \mathrm{x} \text { is an integer if } x \neq 0 \\
& \text { an integer,q, times an integer } \mathrm{q} \text { is an integer. } \\
& \text { Therefor } x^{2}=x(x)=\text { aninteger, therefor } x^{2} \neq 0 \\
& \text { The contrapositive } \\
& \qquad \neg q=\neg p \\
& \text { is true making } p=q \text { true. }
\end{aligned}
$$

Correct Proof:
We wish to prove that $x^{2}=0 \Longrightarrow x=0$.
Suppose for contradiction that $x^{2}=0$ and $x \neq 0$.
Since $x \neq 0$, we have by division axiom there exists a real number x^{-1} such that $x x^{-1}=1$.
Multiplying both sides of $x^{2}=0$ by x^{-1} yields $x \cdot x \cdot x^{-1}=0 \cdot x^{-1}$.
The left side is equal to $x \cdot 1$, which is equal to x by the unity law.
The right hand side is equal to 0 because we proved that $0 \cdot a=0$ for any real a.
Therefore $x=0$.
This contradicts the assumption that $x \neq 0$. Thus we have proved the original claim.

Prove that
$x^{2}=0 \Longrightarrow x=0$.

Incorrect (not even wrong) Proof:

$$
\begin{aligned}
& x^{2}=0 \text { then } x=0 \text { if } x \neq 0 \\
& \text { where } x^{2}=0=p \text { and } \mathrm{x}=0=\mathrm{q} \\
& \text { then } x^{2} \neq 0 \mathrm{x} \text { is an integer if } x \neq 0 \\
& \text { an integer,q, times an integer } \mathrm{q} \text { is an integer. } \\
& \text { Therefor } x^{2}=x(x)=\text { aninteger, therefor } x^{2} \neq 0 \\
& \text { The contrapositive } \\
& \qquad \neg q=\neg p \\
& \text { is true making } p=q \text { true. }
\end{aligned}
$$

Correct Proof:
We wish to prove that $x^{2}=0 \Longrightarrow x=0$.
Suppose for contradiction that $x^{2}=0$ and $x \neq 0$.
Since $x \neq 0$, we have by division axiom there exists a real number x^{-1} such that $x x^{-1}=1$.
Multiplying both sides of $x^{2}=0$ by x^{-1} yields $x \cdot x \cdot x^{-1}=0 \cdot x^{-1}$.
The left side is equal to $x \cdot 1$, which is equal to x by the unity law.
The right hand side is equal to 0 because we proved that $0 \cdot a=0$ for any real a.
Therefore $x=0$.
This contradicts the assumption that $x \neq 0$. Thus we have proved the original claim.

Prove that
$x^{2}=0 \Longrightarrow x=0$.

Correct Proof:

We wish to prove that $x^{2}=0 \Longrightarrow x=0$.
We will proceed by contradiction: assume that $x^{2}=0$ and $x \neq 0$.
Since $x \neq 0$, then by the division axiom, there exists a real number x^{-1} such that $x \cdot x^{-1}=1$.
Then
$x^{2}=0 \Longrightarrow x \cdot x=0 \quad$ by definition of square
$\Longrightarrow(x \cdot x) \cdot x^{-1}=0 \cdot x^{-1} \quad$ doing the same operation to both sides
$\Longrightarrow x \cdot\left(x \cdot x^{-1}\right)=0 \cdot x^{-1} \quad$ associativity
$\Longrightarrow x \cdot 1=0 \quad$ left: definition of x^{-1}, right: using given fact $a \cdot 0=0$ for a real $\Longrightarrow x=0 \quad$ by unity

This contradicts our assumption that $x \neq 0$, so we have our desired contradiction.

Let $P(n)$ be the statement
" n is even"

Let $P(n)$ be the statement

$$
1+2+\cdots+n=\frac{n(n+1)}{2}
$$

Example: Let $\mathrm{P}(\mathrm{n})$ be the statement:

$$
1+2+\cdots+n=\frac{n(n+1)}{2}
$$

1) Prove the statement $P(1)$.
2) Prove the statement $P(n) \Longrightarrow P(n+1)$.

Example: For all positive integers n ,

$$
1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1
$$

Getting started with induction:

- Write down exactly what $P(n)$ is
- Verify a few examples by hand, for specific n.
- Write down the statement $\mathrm{P}(1)$ and verify that it is true.
- Write down the statement " $P(n)=>P(n+1)$ "
- Prove the statement " $P(n)=>P(n+1)$ "

Induction template: • First we verify the base case $\mathrm{P}(1)$:

- Now we prove the inductive step $P(n)=>P(n+1)$:
- Suppose $P(n)$ is true. This means that...
- We have thus shown that $\mathrm{P}(\mathrm{n}+1)$ is true.
- The result follows by the principle of induction.

Theorem: For all positive integers n, the number $n^{3}+2 n$ is divisible by 3.

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

Getting started with induction:

- Write down exactly what $P(n)$ is
- Verify a few examples by hand, for specific n.
- Write down the statement $P(1)$ and verify that it is true
- Write down the statement " $P(n)=>P(n+1)$ "
- Prove the statement " $P(n)=>P(n+1)$ "

Induction template:

- First we verify the base case $P(1)$:
- Now we prove the inductive step $P(n)=>P(n+1)$:
- Suppose $\mathrm{P}(\mathrm{n})$ is true. This means that...
- We have thus shown that $P(n+1)$ is true.
- The result follows by the principle of induction.

Example:

There do not exist integers m and n such that
$14 m+20 n=101$.

- Suppose for contradiction that m, n are integers such that $14 m+20 n=101$.
- Then $2(7 m+10 n)=101$.
- Thus $101=2 q$ for some integer q, so 101 is even.
- This contradicts the fact that 101 is odd.

We need to prove that 101 is not even.
Suppose for contradiction that 101 is even.
Then $101=2 q$
Then $1=101-100=2(q-50)$.
If $q-50 \leq 0$ then $1 \leq 0$, a contradiction.
If $q-50 \geq 1$ then $1 \geq 2$, also a contradiction.
So 101 cannot be even.

Recall:

$P \Longrightarrow Q \quad$ is equivalent to $\quad \neg Q \Longrightarrow \neg P$
This can used to transform statements into something easier to prove.

Example:
$a c \leq b c \Longrightarrow c \leq 0$

We prove the contrapositive: if $c>0$ then $a c>b c$.

This is axiom 3.1.2 ii) in the textbook.

Recall:

$P \Longrightarrow Q \quad$ is equivalent to $\quad \neg Q \Longrightarrow \neg P$
This can used to transform statements into something easier to prove.

Example:
If n^{2} is odd then n is odd.

We prove the contrapositive: if n is even then n^{2} is even.
Suppose n is even, then $\mathrm{n}=2 \mathrm{q}$ where q is an integer.
Then $n^{2}=4 q^{2}=2\left(2 q^{2}\right)$, so we have shown that n^{2} is even.

We prove the contrapositive: if n is even then n^{2} is even.
This follows from the fact we proved last time:
If a and b are even, then $a b$ is even.
Indeed we can take $\mathrm{a}=\mathrm{b}=\mathrm{n}$ in the above statement.

Example:

$$
a b=0 \Longrightarrow a=0 \text { or } b=0
$$

$a b=0$ and $a \neq 0 \Longrightarrow \mathrm{~b}=0$.

Suppose a, b are real numbers such that $a b=0$, and suppose $a \neq 0$.
Multiplying both sides by a^{-1} yields $a^{-1} a b=a^{-1} \cdot 0$.
The left hand side is equal to b .
The right hand side is equal to 0 .
So $b=0$ as desired.

- Proof by contradiction
- Proof by cases
- Proof by contrapositive
- Proving an 'or’ statement.

Warning: many proofs do not fit neatly into one of these categories.

Especially try to avoid proof by contradiction (usually proof by contrapositive is better).

