MAT200: Logic Language and Proof

Lecture 17 - April 5 2021

Continue talking about theory of counting for infinite sets

Highlights:

• Theorem: $\mathbb{R} - \mathbb{Q}$ is nonempty.

• Theorem: $\mathbb{R} - \mathbb{A}$ is nonempty.

Here

 $\mathbb{A} = \{x : \text{there exists polynomial } p \text{ with integer coefficients such that } p(x) = 0.\}$

• There are different infinities.

Let A, B be sets.

We define $|A| \leq |B|$ to mean that there is an injective function $f: A \to B$.

We define |A| = |B| to mean that there is a bijection between $f: A \to B$.

We define |A| < |B| to to mean that $|A| \le |B|$ and not (|A| = |B|)

Last time: Let $A = \mathbb{R}$ and $B = \{x : 0 < x < 1\}$. Then |A| = |B|.

Today we'll do more examples

Theorem: $|\mathbb{N}| = |\mathbb{Z}|$

Theorem: $|\mathbb{N}| = |\mathbb{Q}|$

Definition: If $|\mathbb{N}| = |X|$ then X is said to be **countably infinite**.

Theorem: If X and Y are countably infinite then $X \cup Y$ is countably infinite.

Definition: If $|\mathbb{N}| = |X|$ then X is said to be **countably infinite**.

Definition: If X_1, X_2, \ldots is an infinite sequence of sets then $\bigcup_i X_i$ is defined to be $\bigcup_i X_i = \{x : \exists i, x \in X_i\}$

Theorem: If X_1, X_2, \ldots is an infinite sequence of sets then $\bigcup_i X_i$ is countable.

Product of countable sets is countable

the set			

Definition: If $|\mathbb{N}| = |X|$ then X is said to be **countably infinite**.

Theorem: If X and Y are countably infinite then $X \times Y$ is countably infinite.

Definition: If $|\mathbb{N}| = |X|$ then X is said to be **countably infinite**.

Theorem: If there exists a surjection $f : \mathbb{N} \to A$, then A is countable.

Suffices to find surjection $\mathbb{N} \to A$ to show that A is countable

We have the following theorems:

- \mathbb{Z} is countable
- Q is countable
- Any product of countable sets is countable
- Any union of countable sets is countable
- The set of all possible English/Chinese/Human language texts is countable

Can we even think of a set that's not countably infinite?

Yes.

This explains the phrase "There are different infinities".

