Review
See post for recordings from
Prof Canntzzo
for $\quad 3 R, 3 \cdot 8,41$ -
4.5, Ch 4 Review -

Recall:
$f^{\prime}>0 \Longleftrightarrow f$ is increasing \Leftrightarrow going "uphill(")
$f^{\prime}<0 \Leftrightarrow f$ is decreasing \Leftrightarrow going "dombict

$f^{\prime \prime}>0 \Leftrightarrow f^{\prime}$ is increasing $\Leftrightarrow f$ is "getting.
steeper"
\Leftrightarrow slope increasing
$f^{\prime \prime}<0 \Leftrightarrow f^{\prime}$ is decreasing $\Leftrightarrow f$ is not "getting
\Leftrightarrow slope decreasing.

$217 f^{\prime}(x>0)$ on $(2, \infty)$

201

Where is f increasing/decreasing? Where is $f^{\prime}>\oplus, f^{\prime}<0$?

$$
\begin{aligned}
& f^{\prime}>0:(2, \infty),(-2,-1) \\
& f^{\prime}<0:(\infty,-2) \quad(-1,2) \\
& f^{\prime \prime}>0 \Leftrightarrow \text { concave up } \\
& f^{\prime \prime}<0 \Leftrightarrow \text { concave down }
\end{aligned}
$$

Volime
$=r^{3}$
(1) Draw picture

(2) White what goure given
Let V be volume what the goolis.

$$
\frac{d V}{d t}=-10
$$

decreasing at rate 10 $=$ increasing at rate -10
Find $\frac{d r}{d t}$ when $\quad t=2$
(3) Relationship between. V and r

$$
V=r^{3}
$$

(4) Differentialte (apply $\frac{d}{d t}$)

$$
\begin{aligned}
& \left.\frac{d}{d t} V\right)=\frac{d}{d f}\left(r^{3}\right) \\
& \frac{d V}{d t}=3 r^{2} \frac{d r}{d t}
\end{aligned}
$$

(3).

$$
-10=12\left(\frac{d r}{d t}\right)
$$

So $\frac{d r}{d t}=\frac{-10}{12}=-\frac{5}{6}$

