Review \#3 Monday May II
what problems do you lave questions about?
\times Let me know of already covered in previous review today.
545. Find ant: derivatives
of $g(7)=\sqrt{x}-\frac{1}{x^{2}}$

Recall:
$\frac{f \mid f^{\prime}}{x^{a} / n x^{n}-1}$

Solution
Rewrite

$$
g(x)=x^{\prime \prime} 2-x^{-2}
$$

So one antiderivative is

$$
\frac{2}{3} x^{3 / 2}+x^{-1}
$$

All fhe antiderivatives ane

$$
\int y d x=\frac{2}{3} x^{3 / 2}+x^{-1}+C
$$

Cre. differentiafive above yields $x^{12}-x^{-2}$).

Verify:

$$
\begin{aligned}
& \frac{d}{d x} \frac{2}{3} x^{3 / 2}+x^{-1}+C \\
& =\frac{2}{3}-\frac{3}{2}-x^{1 / 2}-x^{-2}+0 \\
& =x^{1 / 2}-x^{-2}
\end{aligned}
$$

Notation:
antideriative of $g \Leftrightarrow \int g d x$

If Midfemi 2
Find $\frac{d y}{d x}$ if $y=\ln \left((2 x)^{x}\right)$
Key: use log lows to simplify firsts

$$
\begin{aligned}
* \ln \left(a^{b}\right) & =6 \ln (a) \\
* \frac{d}{d m} \ln x & =\frac{1}{x}
\end{aligned}
$$

$$
y=\pi \ln (2 x) \quad(\operatorname{losing} \log)
$$

S_{0}

$$
\left.\begin{array}{rl}
\frac{d y}{d x} & =1 \cdot \ln (2 x)+x \frac{2}{2 x} \quad \text { (product } \\
\text { rule }
\end{array}\right)
$$

(e) Midtaom

$$
\lim _{x \rightarrow 0} \frac{\tan x}{\sin x}=?
$$

Canit plug ir $0 \quad\left(\frac{0}{0}\right)$.

Recall:

$$
\begin{aligned}
\tan x & =\frac{\sin x}{\cos x} \\
\lim _{x \rightarrow 0} \frac{\tan x}{\sin x}= & \lim _{x \rightarrow 0} \frac{\frac{\sin x}{\cos x}}{\sin x} \\
= & \lim _{x \rightarrow 0} \frac{1}{\cos x} \\
= & \frac{1}{\cos (0)} \\
= & =1
\end{aligned}
$$

$$
4.6 \div \quad 295,304
$$

(Removed everything else).

$$
47 \quad 354
$$

Five adjacent, identical pars total area 1000.

$$
y \left\lvert\, \begin{array}{l|l|l|}
x & 1 & \mid \\
\hline
\end{array}\right.
$$

What dimensions to minimize total cumocent of fencing?
(1) Draw picture label quantities.
(2) Constraint:

$$
\begin{aligned}
& \text { Area }=1000 \text {. } \\
& \text { width } \times \text { Legit }=5 \times y=1000
\end{aligned}
$$

Goal: Minimize Fencing:

Minimize

$$
F=6 y+10 x
$$

(3) Sab. constraint into

Coal.
Constraint:

$$
\begin{aligned}
& 5_{x y}=1000 \\
& x y=200 \\
& \Rightarrow y=\frac{200}{x}
\end{aligned}
$$

Goal:

$$
\begin{aligned}
F & =6 y+10 x \\
& =\frac{6 \cdot 200}{x}+10 x \\
& =6-200 x^{-1}+10 x
\end{aligned}
$$

(4) Minimize $F \quad(x>0)$

Critical points:

$$
\begin{aligned}
F^{1}=0 & \Leftrightarrow-6 \cdot 200 x^{-2}+10=0 \\
& \Leftrightarrow 10=1200 x^{-2} \\
& \Leftrightarrow x^{2}=120 \Leftrightarrow x=\sqrt{120}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} F(x) & =\lim _{x \rightarrow 0^{+}} \frac{6 \cdot 200}{x}+10 x \\
& =x
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} F(x) & =\lim _{x \rightarrow \infty} \frac{6-200}{x}+10 x \\
& =\infty
\end{aligned}
$$

Looking at graph, we conclude that $x=\sqrt{20} \quad$ is araiman

If we hadn't looked at boandany, we don't

Second derivative test is not reliable:
 is local min. Bat need move thought to ensure is abs. min.

$$
x=\sqrt{120}=\sqrt{430}=2 \sqrt{30}
$$

So best dimensions
ave

$$
\begin{aligned}
& x=\sqrt{120} \\
& y=\frac{200}{\sqrt{120}}
\end{aligned}
$$

Lose constratial

$$
\begin{aligned}
& 5_{x y}=1000 \\
& \left.\Rightarrow y=\frac{200}{x}\right)
\end{aligned}
$$

Cost

To find absolute minlmax (Ch 4.5)

1) Find all critical points
2) Find boundary behave our
3) Compare results and pickle smallest/biggest

x	$F(x)$
$\sqrt{120}$	$\frac{6 \cdot 280}{\sqrt{120}}+10 \sqrt{20}$
$\sqrt{140}$	$\frac{6.200}{\sqrt{140}}+10 \sqrt{240}$
0	∞
∞	∞

4.1 Problem 21

Radius of sphere increasing af $9 \mathrm{~cm} / \mathrm{sec}$.
Find radius of sphere when volume and radius are increasing at same mumencal rate.
(1)

Given:
(2) $\frac{d r}{d t}=9$

Coal:
Find r when

$$
\frac{d v}{d t}=\frac{d b}{d t}
$$

(3) Relationship befween V and r :

$$
V=\frac{4 \pi r^{3}}{3}
$$

(a) Drfferentrate relationship:

Cimplicit diff, dift looth sides)

$$
\frac{d v}{d t}=\frac{3 \cdot 4 \pi r^{2}}{3} \frac{d r}{d t}
$$

(5) Acheve our goal: Find r

$$
\begin{aligned}
& 9=4 \pi r^{2} 9 \\
& 1=4 \pi r^{2} \\
& \Rightarrow r^{2}=\frac{1}{4 \pi} \Rightarrow r=\sqrt{\frac{1}{4 \pi}}
\end{aligned}
$$

(d) $M T Z$

$$
\lim _{x \rightarrow 0^{+}} x^{2} \ln x
$$

Plug un 0 :

$$
0-(-\infty)
$$

Use L'hopital's:

$$
\left(\lim _{x \rightarrow 0^{+}} x^{2} \ln (x) \Leftrightarrow \lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x-2}\right.
$$

L'hopital's

$$
\begin{aligned}
= & \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-2 x^{-3}}= \\
& \lim _{x \rightarrow 0^{+}} \frac{x^{2}}{-2}=0
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{cim} \frac{t}{g}=\lim \frac{f}{g^{\prime}} \\
& \frac{0}{0}, \frac{\infty}{\infty}, \frac{-\infty}{\infty}, \frac{\infty}{-\infty}
\end{aligned}
$$

$\lim \frac{f}{g}$

$$
\text { (c). } \begin{aligned}
& \lim _{x \rightarrow \infty} \frac{e^{x}}{x^{3}} \\
&= \lim _{x \rightarrow \infty} \frac{e^{x}}{3 x^{2}} \\
& \frac{d}{d x} x^{3}=3 x^{2}
\end{aligned}
$$

$$
x^{2} \ln x=\frac{\ln (x)}{x^{-2}}
$$

Why? if

$$
\begin{aligned}
\frac{\ln (x)}{x^{-2}} & =\frac{\ln (x)}{x^{-2}} \frac{x^{2}}{x^{2}} \\
& =\frac{\ln (x) x^{2}}{1}
\end{aligned}
$$

More generally,

$$
\frac{a}{b^{-1}}=\frac{a}{b^{-1}} \frac{b}{b}=a b
$$

380 Ch 3
Derivative of y f

$$
x^{2} y=y+z+x y \sin x
$$

Solution lifficit differentiation, solve for $d y / d x$

$$
\begin{aligned}
2 x y+x^{2} y^{\prime}=y^{\prime} & +(x y)^{\prime} \sin x \\
& +(x y) \cos x \\
= & \left.y^{\prime}+(y+x y)^{\prime}\right) \sin x \\
& +(x y) \cos x
\end{aligned}
$$

δ_{0}

$$
\begin{gathered}
2 x y+x^{2} y^{\prime}=y^{\prime}+y \sin x+x y^{\prime} \sin x \\
+x y \cos x
\end{gathered}
$$

$$
\begin{array}{r}
x^{2} y^{\prime}-y^{\prime}-x y^{\prime} \sin x= \\
y \sin x+x y \cos x-2 x y
\end{array}
$$

So

$$
\begin{array}{r}
y^{\left(\left(x^{2}-1-x \sin x\right)\right.}= \\
y \sin x+x y \cos x-2 x y
\end{array}
$$

So

$$
y^{\prime}=\frac{y \sin x+x y \cos x-2 x y}{x^{2}-1-x \sin x}
$$

304 Ch 4.6 .

$$
\begin{aligned}
y=x \ln x \quad & \text { (Find } \\
& \text { } \\
& \text { (rrit poists, } \\
& \text { ric/dec. } \\
& * \text { couc. up/down } \\
& \times \text { asyuptotic }
\end{aligned}
$$

Derivafises:

$$
\begin{aligned}
& y^{\prime}=1 \cdot \ln x+x \frac{1}{x}=\ln x+1 \\
& y^{\prime \prime}=\frac{1}{x}
\end{aligned}
$$

What does y' tell as?

* Critical points $y^{\prime}=0$

$$
y^{\prime}=0 \Leftrightarrow \operatorname{lus}+1=0
$$

$$
\Leftrightarrow \quad \ln x=-1
$$

$$
\Leftrightarrow \quad x=e^{-1}
$$

poolueg y^{\prime} ?

$$
\begin{array}{ll}
y^{\prime}>0 & \text { on } \quad\left(e^{4}, \infty\right) \\
y^{\prime}<0 \quad \text { on } \quad\left(0, e^{-1}\right) .
\end{array}
$$

increasing on ($\left.e^{4}, \infty\right)$ critical point at $x=e^{\prime}$ decreasing on $\left(0, e^{-1}\right)$.

To evaluate sign of $f(x)+1 \quad$ when $x<e^{-1}$, notice that

$$
\underbrace{\text { n(} 0.0001)+1}_{\text {very negative }}=\text { negative. }
$$

y" tells us:

$$
y^{\prime \prime}>0 \quad \text { for } \quad x>0
$$

So
y concave up for $x>0$
Asymptotic $\quad x \in(0, \infty)$

$$
\begin{array}{r}
\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-1}} \\
\quad=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-x^{2}}=\lim _{x \rightarrow 0^{+}}-x=0
\end{array}
$$

$$
\lim _{x \rightarrow \infty} x \ln x=\infty
$$

Sketch graph:
Using all info so far:

at $x=e^{-1}$,

$$
\begin{aligned}
y & =x \ln x \\
y & =e^{-1}(-1) \\
& =-e^{-1}
\end{aligned}
$$

